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ABSTRACT

Recent developments in theoretical Nuclear Physics offer new effective tools that improve the

predictive power of modern low-energy Nuclear Structure. Specifically, the high-quality results

achievable with ab initio methods allow us to test our knowledge of the strong interaction and to

quantify the uncertainty in that knowledge. We review the progress and challenges of Nuclear

Structure up to the present and perform uncertainty studies for several modern methods being

developed to improve current solutions to the nuclear many-body problem. The ab initio No-Core

Shell Model (NCSM) approach is employed throughout this study, though much of the discussion

relates to other ab initio approaches as well.

We demonstrate the effects of basis truncation on the approximation of two-nucleon (2N) wave-

functions and observables in a relative Harmonic Oscillator (HO) basis, and investigate two ap-

proaches for matrix renormalization. We illustrate the effects of Okubo-Lee Suzuki renormalization

on 2N observables for the root-mean-square point-proton radius, electric quadrupole moment, mag-

netic dipole moment, Gamow-Teller transition and neutrinoless double-beta decay operator using

nucleon-nucleon interactions from Chiral Effective Field Theory (χEFT), both with and without

a confining HO trap. We examine the 2N observables at each chiral order of the potential, ver-

ify agreement with experiment to at least a few percent (where applicable), and set the stage for

comparing the results to a theoretically consistent χEFT-treatment in a future study. Renormaliza-

tion effects tend to be largest in the weaker traps and smaller basis spaces, suggesting applications

to heavier nuclei with transitions dominated by weakly-bound nucleons would be subject to more

significant renormalization effects.

In another study, we use the NCSM approach to benchmark the results of the Multi-Reference

In-Medium Similarity Renormalization Group (MR-IMSRG) approach when calculating the matrix

elements of neutrinoless double-beta decay mediated by light Majorana neutrino exchange in a light
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nucleus. The goal is to identify the MR-IMSRG approach as a possible candidate for calculating the

decay’s matrix elements in heavy nuclei. We compare results of the two approaches as a function

of the basis cutoffs, and determine their predictions through extrapolation. Differences between the

two approaches are observed for the square nuclear radii, and signal the effects of correlations that

are omitted by the MR-IMSRG(2) truncation at the two-body level. The ground-state energies

and neutrinoless double-beta decay matrix elements show good agreement, and the implications for

calculations in heavier nuclei are discussed.
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CHAPTER 1. INTRODUCTION

This work is centered around performing ab initio (i.e. “from the beginning”) Nuclear Structure

calculations, where the goal is to solve the Nuclear Many-Body Problem (NMBP) in a way that

preserves the predictive power of realistic inter-nucleon interactions. In particular, we focus on these

calculations as they are done via the No-Core Shell Model (NCSM). Several aspects of the model

approach and formalism, as well as tools to support its performance, are discussed, and examples

of their implementation and results are provided. A broad description of both Nuclear Structure

calculation and the challenges posed by the NMBP are also discussed.

The field of Nuclear Physics is witnessing rapid development in multiple directions. The end

of the 20th century saw several key developments in understanding the nature of scale in physical

models, and significant progress has been made in the implementation of these ideas. The develop-

ment of Effective Field Theory (EFT) and, consequently, Chiral EFT (χEFT) has opened a path

towards a realistic description of the nuclear interaction. Despite a number of formidable challenges,

χEFT has seen rapid advancement in the past decade, and the development of realistic two-nucleon

(2N) interactions with roots in Quantum Chromodynamics (QCD) continues to progress. χEFT

also opens new possibilities for defining a realistic three-nucleon (3N) interaction, a subject that

has otherwise remained poorly understood and limited by the available data. What’s more, χEFT

provides for all levels of the interaction (2N, 3N, etc.), along with the operators describing other

observables to be defined within a consistent theoretical treatment.

The benefits of these developments are manifold. On the one hand, it is thought that the current

differences between theoretical modeling results and experiment could be explained by the adoption

of a χEFT treatment. On the other hand, discrepancies that remain despite such a treatment

could lead to the discovery of further improvements or perhaps even new physics. In a broader

sense, χEFT also offers a path to validate the governing theory (i.e. QCD) in ways never before
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possible, and may provide meaningful QCD-roots to effective models that otherwise primarily rely

on phenomenological descriptions.

The developments provided by EFT are not the only form of significant recent progress. Sev-

eral methods for reducing the complexity of Nuclear Structure approaches (and consequently for

increasing the range of nuclei they can meaningfully model) have been developed, as well as other,

entirely new approaches to the NMBP.

Coupled with the constant improvements of computer technology and the adaptation of Nuclear

Structure methods to their rapid development, the need for efficiently evaluating, benchmarking,

and validating the results and codes of both new and venerable modeling approaches and tools has

grown ever more important in recent years. The computational requirements of ab initio solutions

to the NMBP grow rapidly with nucleon count, and while this does not prevent their use for testing

methods, the consideration of the general many-body problem can make such tests unwieldy and

stifle the investigation of these tools.

However, the problem becomes far more manageable in the two-nucleon (2N) system, where only

a single Jacobi coordinate is required for effective modeling. Thus, to aid in the development and

validation of these new effective interactions, operators, and tools, it is helpful to first explore their

implementation in the 2N system before considering the computationally-demanding calculations

required by larger systems. The following work reflects both studies benchmarking the methods

of ab initio calculation, as well as the development and implementation of a specialized 2N NCSM

framework used for testing and diagnostic purposes.

The discussion will proceed as follows. In the remainder of the introduction, we will establish the

context of Nuclear Structure by considering its history and define both its modern perspective and

the NMBP. In Chapter 2 we define the formalism of the NCSM calculations performed in this work.

We proceed to define and discuss the finer details of basis regularization inherent to the NCSM

process as well as some techniques by which we may correct it in Chapter 3. With the groundwork

complete, we next include a published work regarding the implementation of OLS renormalization

in the two-nucleon system using a recently constructed χEFT potential in Chapter 4. From there



www.manaraa.com

3

we consider a separate benchmark study currently under review by a journal that compares results

from the NCSM and Multi-Reference In-Medium Similarity Renormalization Group (MR-IMSRG)

approaches when calculating a hypothetical neutrinoless double-beta decay in a light nucleus in

Chapter 5. Finally, we provide our conclusions and closing remarks in Chapter 6.

For the remainder of the introduction, we begin with an overview of Nuclear Structure’s historical

developments in Section 1.1 to provide context to the subsequent discussion. This leads us to a brief

description of ab initio Nuclear Structure in Section 1.3. We conclude the introduction by briefly

describing the NMBP in Section 1.4.

1.1 Brief history of Nuclear Structure

We briefly outline the history and development of Nuclear Structure, to address the varied

problems and methods that define it. See the corresponding sections of Ref. [1] for a comprehen-

sive review of the theoretical development, and Ref. [2] for the development of the various Nuclear

Structure approaches used to define it. Throughout, our discussion follows two closely entwined nar-

ratives: the development of the effective inter-nucleon interaction, and the development of Nuclear

Structure approaches used to solve the NMBP.

We begin with the foundations of the nucleus and other components contributing to the NMBP

in Subsection 1.1.1. We follow with the development of the first Nuclear Structure models in

Subsection 1.1.2. This leads our discussion to the development of Nuclear Structure calculation

in Subsection 1.1.3, and modern efforts of developing a realistic, effective nuclear interaction in

Subsection 1.1.4.

1.1.1 Foundations of the nuclear paradigm

The NMBP possesses a long history, containing components that span a great swath of historical

developments. The description of a classical many-body problem using solely a two-body interaction

dates back to Newton’s theory of gravity near the end of the 17th century, and was found to

successfully predict the motion of celestial bodies to very high precision. The method involves
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treating the net force acting on a single body to be the additive sum of all forces between that

body and every other individual body in the system. The same principle is valid for descriptions of

many-body systems subject to the Coulomb interaction of Maxwell’s theory of electromagnetism in

the 19th century.

However, near the end of the 19th century, it was observed that, unlike Newtonian Mechanics,

Maxwell’s equations did not display Galilean invariance, and physicists struggled to identify which

theory required correction. Further, other puzzling phenomena, such as black-body radiation (ob-

served by Gustav Kirchhoff in the 1850s) and the photo-electric effect (observed by Heinrich Hertz

in the 1880s), had long since been observed but could not yet be defined or modelled effectively by

the current theory.

Following a series of theoretical developments on these subjects, Max Planck offered his hy-

pothesis on the quantum nature of light in 1900, which would prove critical for the development of

Quantum Mechanics later in the 1920s. Shortly after, Albert Einstein proposed his theory of Rela-

tivity in 1905, which, after some further development, would become widely accepted by the 1920s.

Relativity resolved the inconsistency between Maxwell’s electromagnetism and Newton’s mechanics

by introducing Lorentz invariance, and showed that a relativistic treatment of mechanics reduces

to Newtonian Mechanics at sufficiently low velocities. Together these theories would largely resolve

much of the aforementioned phenomena that had not yet been explained.

Meanwhile, following the discovery of the electron by J. J. Thomson and the introduction of his

plum-pudding model in 1900, the description of matter at the atomic level also received significant

attention by the scientific community. The idea of an atomic nucleus was arguably first posed in

1904 by Hantaro Nagaota as it appeared in his Saturnian model, which posed the existence of a

central positive mass surrounded by light, negative electronic rings. There were several serious

problems with the idea however, the most notable being that the current theory suggested the

electrons should lose energy through electromagnetic radiation and all atoms should collapse in on

themselves in a matter of picoseconds.
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Though Nagaota later abandoned the Saturnian model in 1908 for this and other reasons, many

of the model’s key features later reappeared in the Rutherford-Bohr model of the atom in 1913

following the Rutherford gold-foil experiment. The model was still plagued by a number of problems,

but after several experimental discoveries (spin, protons, isotopes, neutrons) and the development

of both quantum mechanics and quantum electrodynamics (QED), these problems would be largely

resolved by the mid-1930s. The 1920s also marked the beginning of the atomic shell model and the

Configuration Interaction (CI) methods used in quantum chemistry. Both would eventually prove

instrumental for modeling nuclei decades later.

However, a new problem had emerged by the 30s: the discovery of separate nucleons suggested

there must be some new force that kept the nucleus together despite coulomb repulsion. To explain

this, Werner Heisenberg proposed in 1932 the idea that the neutron might be a composite particle

of a proton and electron, and that by exchanging an electron with another proton, the nucleus is

kept together. There were problems with the description, the most notable being that two spin 1/2

particles like the proton and electron cannot add to a spin 1/2 neutron, though the idea would prove

useful and also lay the foundations for the concept of isospin.

In addition to the former issue, various weak decays, such as β-decay, had been observed but

not yet explained. Starting from Heisenberg’s idea, Enrico Fermi proposed his theory of the weak

interaction in 1933 to explain such phenomena, and resolved the issue of conserving linear and

angular momentum through the introduction of the neutrino. This too would ultimately prove

insufficient, as it was demonstrated the emission of the neutrino and electron would be insufficient

force to hold nuclei together.

Following the works of Heisenberg and Fermi, Hideki Yukawa combined their ideas in 1935 by

proposing a short-range interaction mediated by boson exchange, and defined what would subse-

quently be called the Yukawa potential. The potential included an inverse power of radial separation

for coulomb repulsion at longer ranges, but was dominated by an exponential associated with the

boson exchange at short-ranges. Unlike the massless photon of Quantum Electrodynamics, Yukawa

estimated the boson (called the “meson” due to having mass between the electron and proton) in-
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volved in the short-range interaction would need to be roughly 200 times more massive than the

electron, and his description would be proven correct around a decade later with the discovery of

the pion. Moreover, his potential is commonly seen to represent the first working description of the

NN potential, and would prove key to the development of mean-field approaches, meson-exchange

theory, and various phenomenological interactions that would form the bedrock upon which all

modern Nuclear Structure calculation is founded. Even still, it wouldn’t be until the 60s that the

true nature of the strong force would be discovered.

Nevertheless, this time saw developments in other directions. While classical field theories had

been used to great success already for electromagnetism since the 18th century the work of Dirac

QED marked the first Quantum Field Theory (QFT) [3], which continued to develop with the

introduction of the Dirac equation in 1927, a relativistically invariant treatment of QED in 1938,

and the path-integral formalism of Feynman diagrams in the late 40s. However, the higher-order

terms of QED always produced infinite contributions, and a method to resolve this problem (which

would be called renormalization), would not appear until 1949 with the works of Feynman and

Schwinger.

The main thrust of renormalization in this context is to add counter-terms to the Lagrangian

that cancel the infinities, and redefine a finite number of physical quantities to account for the effects.

While the procedure was long considered suspect even by some of its progenitors, renormalization

would eventually be embraced and prove vital to understanding how different physical scales can

be connected; a concept that is critical to modern Nuclear Structure and the foundation of EFT.

At the time however, though renormalization resolved the remaining issues of QED, it did not

ultimately resolve all the problems faced by using QFT to describe microscopic particle interactions,

and it would be another two decades before another major step forward was made. For a more

comprehensive review of the developments of QFT and the nuclear paradigm through the first half

of the 20th century, see Ref. [4].
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1.1.2 Early Nuclear Structure models

Returning to the development of Nuclear Structure, the first collective nuclear model predictions

were made in the 30s using the liquid-drop model, where one calculates the binding energies in a

way similar to calculating the surface tension of a spherical drop of fluid. The model proved very

effective at approximating nuclear binding energies observed by experiment, and, with the addition

of several correction terms following various other discoveries up to the 50s, would eventually evolve

into the Semi-Empirical Mass Formula (SEMF), which is still considered a useful approximation

today.

On the other hand, all attempts at a microscopic nuclear model failed until 1949, when the

independent particle model (IPM) was developed [5, 6]. While the presence of “magic” nuclei (i.e.

nuclei with greater binding than those with slightly different nucleon counts) had been observed

since the 30s and a shell structure considered, all attempts at describing the nuclear potential failed

to correctly predict these magic numbers until the development of a spin-orbit term in 1946. The

IPM involves treating each nucleon independently in a central mean-field plus a spin-orbit term,

while still requiring Pauli exclusion for fermions (much like one solves the electron orbitals of the

atomic shell model), such that the nuclear wavefunction is expressed as a Slater determinant of the

individual particle wavefunctions.

While the IPM successfully predicted the binding energies of closed-shell nuclei and established

the legitimacy of a shell structure to the nucleus, it failed to offer accurate predictions for observ-

ables of most other nuclei, and was generally not seen as an accurate description of most microscopic

Nuclear Structure. Indeed, despite the relatively straightforward force laws of gravity and electro-

magnetism, the nuclear force did not appear nearly so well-behaved, and only an effective interaction

could be defined.

For this purpose, two types of solutions appeared; the first were phenomenological approaches

that attempted to define more general forms of the average nuclear potential using an appropriate

mathematical function, much like the inclusion of the spin-orbit term successfully predicted magic

nuclei. Though some success was found with deformed potentials and using experimental results
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to fit more complex functional forms such as the Wood-Saxon potential, it became apparent that a

purely mean-field treatment was insufficient for most nuclei.

The second solution involved the Hartree-Fock-Bogoliubov (HFB) method, where the focus shifts

to finding an appropriate effective 2N interaction which describes nuclear properties by iteratively

solving the Schrödinger equation to variationally improve an ansatz wavefunction constructed from

a Slater determinant of single-particle states. In effect, this involves forming a system of equations

where the unknowns are the single-particle wavefunctions, and one solves the system such that the

energy is minimized. A successful HFB 2N potential can be used to solve the Schrödinger equation

in a basis expansion, and this led to numerous successful descriptions of a range of low-excitation

energy nuclear properties, especially for nuclei above about atomic number 60. This process and

others like it are often called self-consistent mean-field approaches, and are still used in Density

Functional Theory and effective models of heavy nuclei.

1.1.3 The rise of Nuclear Structure calculation

While the development of the aforementioned methods were significant, the growing amount of

experimental information placed demands on the theory that went beyond the capabilities of mean-

field approaches like the HFB method. Increasingly, the need to include residual inter-nucleon

interactions beyond the mean-field arose. This led to the development of effective inter-nucleon

interactions among "valence nucleons", nucleons outside an inert core of a magic number nucleus.

However, the computational challenges posed by considering many valence nucleons made progress

exceedingly cumbersome. This changed by the 60s when computers first began to become available,

and larger basis spaces became a more realistic option. This was when the first shell model codes

appeared, and marks both the development of Interacting Shell Model (ISM) calculation and the

beginning of Nuclear Structure calculation as it is perceived today.

The ISM involves breaking nuclear shells into a core, valence, and external space. The core is

treated with a mean-field ansatz, where core nucleons are considered inert and thus do not appear in

the Slater determinant wavefunction. Instead the wavefunction contains only the remaining valence
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shell nucleons, and the Slater determinant basis is truncated beyond a certain valence shell. The

impact of the unoccupied external space can then be estimated through renormalization (though

this would not be fully realized until later).

The ISM has seen great success, and remains a major paradigm in Nuclear Structure. Unsur-

prisingly however, the assumption of an inert core turns out to neglect important degrees of freedom

(DoFs) in many nuclear states, such as states involving collective motion, and can become a poor

description of the microscopic system. Moreover, such a treatment usually makes quantifying the

result’s uncertainty very difficult, which is vital to the calculation’s practical use.

To address these limitations (in both Nuclear Structure and quantum chemistry, which had been

facing similar challenges), various new model treatments were developed in the decades leading up

to the present where the assumption of an inert core is relaxed or done away with entirely. The

former, such as cluster approaches like the Interacting Boson Model (IBM) [7], find a happy medium

that allow them to solve certain heavier systems the ISM could not, but face similar limitations for

their own set of nuclei. These sorts of approaches are therefore often called “effective” models. The

latter became known as ab initio (or “from the beginning”) models, and will become the focus of

our discussion later.

1.1.4 The path to a realistic nuclear interaction

Returning now to the topic of the 2N interaction, by the 70s quarks were discovered and QCD

was defined as the governing theory of the strong force. Indeed, It would eventually be understood

that the nuclear force is in truth only a consequence of quark/anti-quark/gluon (qq) interactions.

However, while qq interactions are well-defined at high energies, the problem becomes much

more complex at low energies due to two fundamental properties of QCD: color confinement and

asymptotic freedom. That is, the strong force interacts weakly at high energies (allowing pertur-

bative solutions), but at low energies becomes strong and prevents colored particles (quarks) from

being isolated. Consequently, attempts at modeling low-energy quark systems, let alone nuclei, at

the level of QCD proves very challenging.
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Nevertheless, the advances in QCD and QFT led to substantial progress in the following few

decades on relativistic treatments that would come to be collectively called meson-exchange the-

ories. Despite significant challenges and some drastic approximations when applied to low-energy

properties of nuclei, these theories led to the development of several highly-accurate meson-exchange

potentials still used today. These potentials involved the inclusion of phenomenological terms that

can be fit to match contemporary 2N data with very high accuracy. Some examples of the most

successful of these include CD-Bonn [8], Argonne V18 [9], and several others, and they’ve allowed

unprecedented success in numerous Nuclear Structure calculations.

Thus, most Nuclear Structure relied on phenomenological potentials through the 80s and 90s,

while the community’s understanding of renormalization and scale transformation continued to

develop and be formally defined. The development of EFT and subsequently χEFT in the late 90s

has since offered the necessary formalism for a well-defined, quantitative description of interactions

and nuclear phenomena at vastly distinct scales than those of the governing forces.

Consequently, the last two decades have since seen tremendous advancement in the development

of a realistic 2N interaction rooted in QCD with well-defined theoretical uncertainties, and efforts

towards defining a realistic 3N interaction have also progressed greatly. While presenting some sig-

nificant mathematical and computational challenges, realistic interactions have certain advantages

over their phenomenological counterparts, the most notable being that their roots in QCD allow the

well-defined propagation of theoretical uncertainties. So long as the model uncertainty is also well-

defined, Nuclear Structure results with such an interaction can potentially be used to validate (or

invalidate) theory and predict emergent phenomena in ways phenomenological potentials cannot.

Nevertheless, these realistic potentials pose several difficult challenges, and their implementation

remains a dominant focus of current research.

1.2 Modern Nuclear Structure

Ostensibly, one would like to describe all quark and Nuclear Structure directly from the theory

of the strong force, that being QCD. Unfortunately, the complexity of QCD and the very wide
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interval of scales relevant to nuclei make a single theoretical approach that is effective for all sizes

of nuclei (let alone the inclusion of quark systems) rather unlikely in the foreseeable future.

Instead, a more realistic strategy (and the contemporary one) is to use a sequence of different

model frameworks at different scales, where the frameworks are connected to each other in a well-

defined theoretical treatment of scales. Specifically, the frameworks closer to the scales of QCD are

used to define the effective inputs required to retain predictive power at a much larger scale. The

formal treatment relating these scales is manifestly EFT.

Effective Field Theory (or sometimes just Effective Theory outside the context of QFT) allows

the study and description of how the DoFs at one physical scale evolve from the (usually different)

DoFs at the scale of the system’s underlying substructure, and its development can be seen woven

through particle physics, statistical mechanics, general relativity, and several other disciplines. In

Nuclear Theory, the works of Weinberg [10, 11] and van Kolck et. al. [12] in the 90s pioneered

an approach based on the chiral symmetry exhibited by QCD, where one begins from the most

general Lagrangian for pions and nucleons before accounting for the spontaneous chiral symmetry

breaking. This treatment, called Chiral Effective Field Theory (χEFT), and its perturbative sort-

ing of terms, called Chiral Perturbation Theory (χPT), offers a model-independent approach for

low-energy Nuclear Structure possessing both a direct connection to the underlying QCD symme-

tries and a systematically improvable calculation scheme. Consequently, (χEFT) has become the

contemporary modern approach for connecting the distant scales of QCD and nuclei, and represents

a rapidly growing field of study in Nuclear Theory.

For instance, beginning from QCD, one may use lattice-based methods to simulate quarks and

gluons directly. Using those results, one may determine the low-energy constants (LECs) required

to define effective interactions and operators that average over the QCD substructure under χEFT.

Using these effective interactions and operators in ab initio methods allows the modeling of light

nuclei and the determination of their observables. Performing an additional unitary transformation,

such as one defined by the Similarity Renormalization Group (SRG, a subject that is closely related

to EFT) can further extend the reach of these methods. Furthermore, with sufficient renormalization
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the effective interactions can be used in configuration-mixing and cluster models for medium-sized

nuclei, and in turn define the mean-field and effective forces required by density functional theories

for the effective modeling of the heaviest nuclei.

Despite how both this goal of a unified, broadly-applicable approach and its solution using

a model hierarchy bound together by a common theoretical framework are fairly pervasive ideas

throughout current literature, I have not found a phrase to easily refer to the general notion of such a

treatment. Thus, for lack of a better term, I shall refer to this concept as a “unified nuclear effective

model”, or UNEM, to facilitate the idea’s discussion. That is, without specifying the specific model

treatments or their interdependence, I shall use UNEM to mean a formal, well-defined approach

that overcomes the distant scales of nuclei by applying multiple frameworks within a hierarchy of

scale where each framework’s inputs and outputs (and consequently the uncertainty associated with

them) are connected by a quantifiable treatment of the scale transformations between them.

The primary challenge in determining a successful UNEM then is to retain the important physics

and avoid arbitrary renormalizations at each redefinition of the DoFs. That is, as the nucleus being

considered varies both between 1) the proton and neutron drip lines and 2) light to heavy nuclei

along the valley of stability, we need to acquire a better understanding of how the behavior of

nuclear matter changes, how the relevant DoFs evolve, and, consequently, how each will best be

described. This is particularly true for nuclei with large neutron excesses, which, despite being

where most heavy nucleosynthesis occurs, is also where the predictive power of modern Nuclear

Structure appears to require the most improvement [13].

Naturally, the first steps for both developing such an understanding and identifying the feasibility

of a UNEM requires defining the connection from QCD to light nuclei. Since the latter are generally

the domain of ab initio approaches, we now focus our attention to their discussion.

1.3 Nuclear Structure ab initio Theory

We introduce ab initio Nuclear Structure Theory and establish some of the field’s current context.

We begin with a broad description of ab initio approaches and what defines them in Subsection 1.3.1.
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We then describe the significance of uncertainty calculation as it pertains to contemporary Nuclear

Structure in Subsection 1.3.2.

1.3.1 Introduction to ab initio theory

In low-energy Nuclear Physics, recent progress has been made in the microscopic ab initio nuclear

theory of light nuclei, allowing the effective modeling of nuclear dynamics and the interactions of

hadrons in general. Most ab initio methods are distinguished by their inclusion of all nucleonic DoFs

in the problem being solved. The NCSM is one such approach, and is a focus of this work. Other

methods include the Hyperspherical Harmonics (HH) method, Variational Monte Carlo (VMC)

method, In-Medium Similarity Renormalization Group (IMSRG), Green’s Function Monte Carlo

(GFMC), Coupled-Cluster (CC), Lattice QCD (LQCD), as well as several others.

Though each has its own strengths and weaknesses, all ab initio methods generally possess three

common features (beyond their consideration of nucleon DoFs). The first is that they rely on

computational techniques to solve the nuclear Schrödinger equation numerically within a controlled

approximation scheme. The second is that they possess well-defined model uncertainty. Last, their

common limitation is the prohibitively expensive computational requirements of considering the

“full” NMBP as the number of nucleons and the calculation’s precision increases.

While their limitations proved particularly restrictive in the 70s and 80s, the continued growth

in computational resources has allowed enormous steps in the range of nuclei that may be addressed

by these methods. Further, several variations of ab initio approaches exist where approximations

are introduced that reduce the size of the problem at the risk of limiting the cases it may be applied

to, and are therefore generally referred to as "effective" treatments. Some examples include the

IMSRG(2) approximation or the IBM.

Within the last decade, many of the questions regarding the accuracy of ab initio methods

have been resolved, as computational resources have grown and improved methods for determining

the sources of model uncertainty have been developed. Consequently, the differences that are still

observed between ab initio results of light nuclei and experiment are now commonly considered
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largely the result of the theoretical treatment of the interactions and operators themselves, rather

than the many-body methods being used to calculate their observables. Thus, determining an

effective nuclear interaction (as well as other effective operators) has become an even greater point

of focus.

Most ab initio methods involve choosing at least a 2N potential as input, though the need for a

consistent 3N potential has become commonly recognized for realistic calculations of most nuclei, and

the accurate description of 3N forces remains one of the primary long-term goals of current research.

These potentials are then used in a non-relativistic quantum many-body framework that reflects

the symmetries relevant to the choice of potential(s). However, high-quality representations of the

nuclear interaction are both difficult to determine and often challenging to implement. Indeed, this

is, in some sense, reflected by the fact that there doesn’t appear to be a simple analytic expression

for either a mean-field nor 2N (nor 3N) interaction that proves valid for all nuclei. Mentioned

previously, the development of realistic interactions provide new possibilities for validating theory

with improved uncertainty calculations.

1.3.2 Uncertainty calculation in contemporary Nuclear Structure

Before turning to the topic of the NMBP, I wish to provide a brief aside regarding uncertainty

calculation, as it is a significant focus in contemporary Nuclear Structure. In most disciplines

involving model approaches, the development of uncertainty calculation follows what one might

describe as a certain “natural order”. Specifically, the uses of uncertainty calculation generally grow

over a model’s (and its related theory’s) lifetime, as uncertainty estimation often only gets introduced

and improved upon as it becomes necessary. In the earliest stages when a model approach is new

and still developing, uncertainty estimates can serve as a useful way to gauge whether two different

calculations “agree”, and this applies for both calculations from two implementations of the same

approach, or from two very different model treatments considering the same physical system.

Once a method has become better-defined and a level of confidence in its reliability is developed,

uncertainty calculation usually becomes even more important for a new reason: to determine when
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experimental and theoretical results disagree enough to suggest the possibility of new physics. Fi-

nally, even when an approach and the results it predicts become sufficiently well-tested, understood,

and universally-accepted that they, in large part, leave the focus of contemporary scientific inquiry,

the adoption of that approach or its results in practical endeavors, such as engineering, sometimes

demand even more stringent standards of uncertainty estimation.

By comparison, the development of uncertainty calculation in Nuclear Structure calculation was

suppressed somewhat by what proved for a long-time a largely insurmountable challenge to connect

QCD to the NMBP. That is, while the governing theory was known, a way to apply it at the nuclear

scale in a useful way was not, and this greatly restricted what uncertainty estimation (and to some

degree Nuclear Structure in general) could be used to say in regards to QCD. Specifically, when

using a phenomenological interaction, the discrepancies between a numerical model’s results and ex-

periment can be difficult to use to quantitatively validate the nuclear consequences of QCD. Instead,

such discrepancies often only serve to test the effectiveness of the phenomenological extrapolation

approach by which the interaction was defined, the effective theory it is based upon, and the model

approach being implemented itself.

However, the continued development of computer technology and a formalized treatment of both

scale transformations and the redefinition of the active DoFs may finally allow the gap between QCD

and the NMBP to be bridged, and defines one of the leading interests in the development of χEFT.

Similarly, as the accuracy of Nuclear Structure calculations continue to improve and the scientific

community’s reliance on them continues to rise, there is a growing demand for well-defined and

meaningful uncertainty estimation for both a model’s practical use and that of its results.

Consequently, the potential uses for high-quality uncertainty calculation have recently greatly

expanded. In particular, despite its rapid development, the level of success χEFT can achieve

is still unknown, and will depend in part on developing meaningful uncertainty estimation and

understanding how that uncertainty propagates through the relevant theoretical frameworks.

However, while the growth in computational resources and effective theory are driving forces for

uncertainty estimation, so too have they enabled an explosion in the development of new effective
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approaches and tools requiring validation and testing. Thus, Nuclear Structure is presently in a

very dynamic state characterized by a mixture of both venerable and developing approaches and

techniques with varying levels of uncertainty calculation. While well-established methods mobilize

for improved uncertainty calculation, others remain sufficiently new that the development of such

tools is not yet required for the primary focus of their study (which tends to be on feasibility,

efficiency, and accuracy).

Thus, while many of the calculations in this work reflect the development and early testing of

tools that have not yet required the inclusion of highly-accurate uncertainty estimation, I wish to

stress the significance that the development of uncertainty calculation currently represents in the

field. For more insight on the discussion of this topic and its significance, see Refs. [14–16, 13].

1.4 The nuclear many-body problem

We consider the general A-nucleon system of N neutrons and Z protons. We treat all nucleons

as having the average mass of the neutron and proton, mN = 938.92 MeV
c2

(while one can include

nucleon mass isospin splitting, the correction is small and won’t be addressed here). We will denote

the single-particle spatial coordinate and momentum for nucleon i as ri and pi, respectively. With

these we define the system parameters

M = AmN , (1.1)

P =

A∑
i=1

pi , (1.2)

R =
1

A

A∑
i=1

ri , (1.3)

where M is the system’s total mass, P is the center of mass (cm) momentum, and R is the cm

position.

Under Hamilton’s principle the dynamics of the system are fully encoded by the many-body

Hamiltonian

HA = TA + VA (1.4)
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where TA = Trel + Tcm =
A∑
i=1

p2i
2mN

is the total kinetic energy and VA = UCM +
A∑
a=1

V(a) is the full

A-body potential. Naturally, the cm kinetic energy is Tcm = P 2

2M , where we neglect the small effect

of nuclear binding energy on the mass. We can then define the relative (i.e. intrinsic) kinetic energy

Trel = T − Tcm =
A∑
i<j

(pi − pj)2

2AmN
. (1.5)

where our summation avoids double-counting by only summing cases where i < j.

The breakdown of HA from Eq. (1.4) into many-body terms is called the many-body expansion,

and it decomposes the Hamiltonian into a separate one-nucleon (1N) two-nucleon (2N), three-

nucleon (3N), up to A-nucleon operator as

HA =
A∑
i

(H1N )i +
A∑
i<j

(H2N )ij +
A∑

i<j<k

(H3N )i,j,k + ... (1.6)

Moving forward, we shall henceforth assume there are no external fields and the system is in its

rest frame. The former equation then reduces to the intrinsic Hamiltonian

HA =
A∑
i<j

[
1

A

(pi − pj)2

2mN
+ (V2N )ij

]
+

A∑
i<j<k

(V3N )i,j,k + ... (1.7)

where VNN is the two-body interaction, V3N is three-body, and so on. Just as was discussed in

the introduction, we will only consider up to two-body operators for the purposes of developing the

tools discussed in this work.

We ultimately wish to solve the many-body Schrödinger Equation

HA|Ψ〉 = E|Ψ〉 , (1.8)

for eigenenergies E of nuclear |Ψ〉. How one proceeds from here depends on what many-body

approach is applied; see Ref. [13] for a review of various methods. In this work, the NCSM is the

primary focus.
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CHAPTER 2. NO-CORE SHELL MODEL CALCULATION

The NCSM [1] method is a CI approach that treats all present nucleons as active (i.e., it

considers the state of each nucleon as a unique DoF) and is conventionally expressed in the three-

dimensional harmonic oscillator (HO) basis. The phrase “No-Core” serves to distinguish it from the

interacting shell model, which generally assumes an underlying Hartree-Fock approach and therefore

only considers the DoFs of nucleons on the outermost shells and approximates the inner shells with

an inert mean-field core.

The NCSM method can be summarized as constructing the nuclear Hamiltonian using effective

2N (and possibly 3N) interactions, expressing the Hamiltonian as an infinite matrix expanded in

a complete basis, approximating that Hamiltonian matrix by truncating the infinite basis, and

diagonalizing the now finite Hamiltonian to determine its eigenpairs. Once solved, the eigenstates

may then be used to calculate other observables.

The NCSM approach was originally performed in the context of applying Okubo-Lee-Suzuki

(OLS) renormalization when truncating the infinite Hamiltonian matrix, but as new effective po-

tentials and renormalization schemes became available and computational resources increased, OLS

renormalization became less of a necessity for the approach. Consequently, the phrase began to

more generally characterize any CI approach that adopts the “No-Core” model perspective, regard-

less of whether any renormalization is performed or what basis is considered. Nevertheless, as time

passed and other variations on the method were developed, two other phrases began to appear

in the literature to disambiguate themselves from the original NCSM approach: the No-Core Full

Configuration (NCFC) approach, and the No-Core Configuration Interaction (NCCI) approach.

The NCFC approach was originally introduced in 2008 to refer to NCSM calculation without

OLS renormalization, and instead augmented by extrapolation approaches to the continuum limit
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and the use of χEFT-motivated 2N interactions [2]. The phrase NCCI approach was then later used

in 2012 to refer to the computational methods common to both methods [3].

Nevertheless, the precise meaning of these terms have become somewhat nuanced and dependent

on context. Thus, to avoid confusion I will explicitly define my intended meaning of each phrase as

they appear in this work. In doing so I make no claims as to any strict definitions of these terms,

but instead maintain them solely for the sake of clarity.

I shall henceforth use “NCCI” to generally refer to an approach that solves the full NMBP (where

all nucleons are treated as active) using a matrix-eigensolution technique, and the high-performance

computational methods such a technique requires. I use “NCFC” to refer to NCCI study that is

augmented by extrapolation or other approaches that do not strictly reduce the DoFs in the NCCI

problem. Finally, I use “NCSM” to refer to NCCI calculations performed using the HO basis,

regardless of whether renormalization is used. Thus, under these definitions, NCSM calculations

can be considered a subset of NCCI calculations, which in turn can be considered a component of

the NCFC approach.

For the present discussion, we shall begin by establishing the theoretical framework common

to all NCCI calculation, before narrowing to the case of NCSM calculations specifically. NCCI

calculations involve expressing the nuclear hamiltonian as a matrix of inner products in a complete

basis, i.e.

HA =



〈ϕ1|HA|ϕ1〉 〈ϕ1|HA|ϕ2〉 〈ϕ1|HA|ϕ3〉 · · ·

〈ϕ2|HA|ϕ1〉 〈ϕ2|HA|ϕ2〉 〈ϕ2|HA|ϕ3〉 · · ·

〈ϕ3|HA|ϕ1〉 〈ϕ3|HA|ϕ2〉 〈ϕ3|HA|ϕ3〉 · · ·
...

...
...

. . .


(2.1)

where ϕn denotes the nth basis state used for expanding the system’s eigenstates. The eigenfunc-

tions then become weighted sums of the basis functions which can be determined by solving the

matrix eigenvalue problem. The eigenfunctions thus obtained may then be used to calculate other

observables of the system from operator matrix elements calculated in the same basis.
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So long as the basis is complete, the expansion is exact and no observable will have any basis

dependence. However, since a complete basis will be infinite-dimensional, the Hamiltonian must

be truncated to some finite dimension d for practical calculation. This can most easily be seen by

taking the inner product of the Hamiltonian with one of its eigenstates |Ψ〉 and considering the

equality

〈Ψ|HA|Ψ〉 =

( ∞∑
i

〈Ψ|ϕi〉〈ϕi|

)
HA

 ∞∑
j

|ϕj〉〈ϕj |Ψ〉

 , (2.2)

≈

(
d∑
i

〈Ψ|ϕi〉〈ϕi|

)
HA

 d∑
j

|ϕj〉〈ϕj |Ψ〉

 , (2.3)

Eq. (2.2) is exact as it involves the insertion of identities, while Eq. (2.3) is an inner product on the

Hamiltonian with an approximate wavefunction.

The primary benefit of expanding the Hamiltonian in this way is that it may favor a highly-

convergent solution. That is, so long as the basis is well-organized, of the appropriate scale, and re-

spects the symmetries of the Hamiltonian, incrementing the cutoff should converge the ground-state

energy monotonically (thanks to the variational principle) to the exact solution at the continuum

limit, where any basis dependence must vanish.

The step of truncating the basis, sometimes called the Finite Basis Approximation (FBA),

regulates the wavefunction, and predicting, accounting, and/or correcting this regulation can be

viewed as the root of nearly every computational challenge faced in Nuclear Structure calculation.

The quantitative description and handling of basis regulation is sometimes called regulator physics,

and is the primary topic of Section 3.1.

In this chapter, we shall discuss NCSM calculation in two representations: first, we shall es-

tablish the conventional many-body treatment of the A-nucleon Hamiltonian in a many-body basis

constructed from Slater determinants of single-particle HO basis states, and briefly describe some of

the computational methods by which the Hamiltonian eigenvalue problem is solved in Section 2.1.

Second, we will describe how the formulation can be greatly reduced in the case of the two-nucleon
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system and define the 2N NCSM calculations performed in this work using Jacobi coordinates in

Section 2.2.

2.1 Many-body NCSM modeling

We describe the NCSM approach employed to solve the NMBP for light nuclei. We begin

by establishing some of the many-body formalism and basic concepts that are generally common

to NCCI solutions in Subsection 2.1.1. Next, we narrow the discussion to our specific NCSM

treatment, and establish the details that distinguish it in Subsection 2.1.2. We then provide a brief

description of the computational challenges involved in NCCI calculation and an overview of the

numerical methods that are used to overcome them in Subsection 2.1.3. We conclude by offering

some perspective on where these calculations fit into the greater scope of Nuclear Structure in

Subsection 2.1.4.

2.1.1 Nuclear many-body formalism

Nuclear many-body theory involves model implementations at various scales of the problem,

but many of these methods share certain techniques and basic premises. Many-body CI approaches

represent a significant portion of the methods employed to solve the NMBP, and appear in one form

or another at all scales of the problem. CI methods often share common elements between them,

as well as with other approaches to the NMBP.

Thus, we now proceed to define our many-body formalism. Though we shall ultimately focus on

the NCSM method and will often use it as an example, much of the discussion remains general and

also applies to other methods. We begin by establishing the basic premises and common elements

involved in NCCI formulations of the NMBP. Following a brief description of the second-quantized

notation that will appear throughout this work, we then describe the Lawson-Lipkin method by

which states with cm motion may be shifted higher into the spectrum.
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2.1.1.1 Basic premises and common elements of CI approaches

The Pauli exclusion principle requires that identical fermions (such as nucleons) cannot occupy

the same quantum state, and that the wavefunction must be antisymmetric under the exchange

of any two identical fermions. Thus, many-body basis states may be represented by the list of

the single-nucleon states occupied by nucleons. We construct the many-body basis state, |Φν〉, for

nucleon configuration ν by taking the direct sum of the separate many-body neutron and proton

states, i.e.

|Φν〉 = |ΦZ
ν 〉 ⊕ |ΦN

ν 〉 . (2.4)

We independently construct the many-body neutron and proton states, and often use the same

single-particle basis for both (though notably this is not strictly required [3]). For example, we

express the proton many-body basis states, |ΦZ
ν 〉, as Slater determinants of single-particle states

occupied by the system’s nucleons, or

|ΦZ
ν 〉 = A

Z∏
i

|ϕspνi 〉 , (2.5)

where A is an antisymmetrization operator that carries both the sign permutations of the deter-

minant as well as an overall normalization factor and ϕspνi is the state occupied by nucleon i. For

instance, in coordinate space the many-body proton wavefunction would be defined

ΦZ
ν (r1, r2, . . . , rZ) = 〈r1, r2, . . . , rZ |ΦZ

ν 〉 =
1√
Z

∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕspν1 (r1) ϕspν2 (r1) · · · ϕspνZ (r1)

ϕspν1 (r2) ϕspν2 (r2) · · · ϕspνZ (r2)

...
...

. . .
...

ϕspν1 (rZ) ϕspν2 (rZ) · · · ϕspνZ (rZ)

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.6)

Notably, switching any two rows (i.e. interchanging two protons) in the Slater determinant preserves

the magnitude of the nuclear wavefunction but reverses the overall sign, which is precisely the

fermionic behavior we desire. We also see that since the many-body states are dependent on both Z

and N , the resulting many-body basis is consequently specific to the nucleus under consideration.
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2.1.1.2 Second quantization and normal-ordering

For the purposes of discussing many-body states and operators, it is often convenient to use

the language of second quantization, which will appear intermittently in the discussions to follow.

Thus, before continuing, we establish some standard definitions:

|0〉 = |0 0 0 . . .〉 , (2.7)

a†α|0〉 = |α〉 , (2.8)

a†α|α〉 = |0〉 , (2.9)

aα|α〉 = |0〉 , (2.10)

aα|0〉 = 0 , (2.11){
a†α, a

†
β

}
= {aα, aβ} = 0 , (2.12){

aα, a
†
β

}
= δαβ , (2.13)

where |0〉 is the vacuum state, a†α and aα are the single-nucleon creation and annihilation operators

of the state |α〉, respectively, and Eqs. (2.12), (2.13) define their anticommutation relations. For the

sake of clarity, we shall denote single-particle states with the index νi when discussing a given many-

body configuration ν, and use the Greek indices α, β, γ, δ in the context of many-body operators.

Using this notation, we can rewrite the many-body state of Eq. (2.5)

|ΦZ
ν 〉 = a†ν1a

†
ν2 . . . a

†
νZ
|0〉 = |ν1ν2 . . . νZ〉 . (2.14)

Similarly, one can write the total action O of an anti-symmetrized two-body operator O12 as

O =
1

4

∑
αβγδ

〈αβ|O12|γδ〉a†αa
†
βaδaγ (2.15)

where the factor preceding the summation compensates for overcounting.
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Thus far, there remains a great deal of many-body states that are functionally identical beyond

a phase factor from the anticommutator defined by Eq. (2.13) that only depend on the ordering

of creation and annihilation operators of the same nucleon. To remove this degeneracy, we restrict

ourselves to only considering many-body states and operators following a conventional normal-

ordering scheme [4]. That is, we require that all creation operators precede annihilation operators,

and both appear in ascending order (as defined by the ordering of the single-particle basis). For

example, we only consider many-body proton states with the ordering

|ν1ν2 . . . νZ〉 = {a†ν1a
†
ν2 . . . a

†
νZ
}|0〉 . (2.16)

Moreover, when evaluating an operator’s matrix elements, we transpose creation and annihilation

operators such that this ordering is maintained, and include the phase factor (−1)P where P is the

number of operator transpositions between the creation and annihilation operators.

2.1.1.3 Shifting out center-of-mass excitations with the Lawson-Lipkin method

The physical phenomena related to nuclear wavefunctions are translationally invariant in nature;

the finite methods we use to approximate them however, are often not. One source of this is the

limitations on numerical precision inherent to finite methods, which is discussed in Chapter 3.

Another source (and the one we will discuss here) is the use of single-particle coordinates defined

with respect to a fixed origin, which is not a Galilean invariant treatment.

The primary benefit of a fixed origin is that the antisymmetrization of the Slater determinant

becomes trivial when using the one-body coordinate operators ri, compared to the alternative of

trying to use the intrinsic coordinate operators

r̃i = ri −R , (2.17)

which are naturally A-body operators. On the other hand, the drawback of a fixed origin is that

the wavefunction solutions will usually have center-of-mass excitations mixed in. Generally, only
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the intrinsic motion of the nucleons is of interest to us, which would be obscured by the presence of

said cm excitations.

Fortunately, methods for factorizing the spurious cm motion are available and well-understood.

We employ the conventional Lawson-Lipkin method [5], which involves shifting states with cm

excitations high enough in the spectrum that they can easily be distinguished from the low-lying

states of interest. This has been shown (and may be analytically proven) demonstratively effective

for the HO single-particle basis under the Nmax truncation scheme (described in Subsection 2.1.2),

though its potential use in other bases remains largely unstudied.

For example, in the NCSM this involves adding and later subtracting the HO Hamiltonian term

β(HHO
cm − 3

2~Ω) to and from the many-body Hamiltonian, where β is a positive Lagrangian multiplier,

HHO
cm = Tcm + Ucm, Ucm = 1

2MΩ2R2, and Ω is the HO strength parameter of the single-particle

basis. The term serves to shift the states with cm excitations by a scale factor of β~Ω higher in the

spectrum. So long as the shift is larger than the highest eigenstate of interest, the states with the

lowest cm motion then have the desired factorized form

〈ri|Ψν〉 = 〈R|Φcm
0s 〉〈rintrj |Ψintr

ν 〉 , (2.18)

where the minimal cm motion Φcm
0s (i.e. the lowest HO wavefunction whose contribution to the

internal energy is zero and hence does not scale with β) may be corrected for. That the intrinsic

wavefunction factorizes is of critical importance, as certain observables, such as electromagnetic

transition rates, would be altered by cm motion.

2.1.2 NCSM many-body basis formalism

So far, our treatment of the many-body system has remained somewhat generic, and could apply

to a few choices of bases. The choice of basis represents a common point of variation for solving the

NMBP with numerical matrix methods, and various options, each with their own unique advantages

and disadvantages, have been considered in an array of studies over the last few decades [6, 3, 7–10].
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However, there are some common features any choice of complete basis must possess to be

viable for NCCI calculation. First, we generally require a basis respecting parity and total angular

momentum, as these are the symmetries of nuclear bound states. Second, beyond being specified

by N and Z, any truly general basis must possess at least two additional adjustable DoFs. First,

because the complete basis must be infinite, a truncation scheme is required to vary which and how

many states are included in the basis (and, consequently, the computational resources required) for

a given calculation. Second, the resolution and/or physical scales at which the basis will be effective

must be specified. The basis can be defined such that these two features are controlled by a mixture

of parameters.

We proceed to describe how our many-body approach addresses these matters, and explicitly

define the basis formalism used in the studies contained in this work. First, we describe the M-

scheme many-body basis, and begin to explicitly define our treatment. Second, we derive the

single-particle basis used to describe the states of individual nucleons. We finish by describing some

additional considerations taken when constructing the many-body basis and corresponding matrix

representation of the Hamiltonian in practice.

2.1.2.1 The M-scheme many-body basis

We form many-body states of fixed total nuclear angular momentum projection MJ and fixed

parity PP , as the corresponding Hamiltonian will have eigenstates of good total nuclear angular

momentum J and parity. Naturally, when A is even (odd), MJ will be integer (half-integer), as the

states don’t mix due to baryon number conservation. In our case, we use the MJ = 0 and MJ = 1
2

blocks for even and odd A, respectively.

Such a treatment can be easily constructed by using a single-particle basis where the single par-

ticle state’s parity, pP , and total momentum magnetic projection, mj , are good quantum numbers,

as then, for a given many-body state,

MJ =

A∑
i

(mj)i , (2.19)
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PP =

A∏
i

(pP )i . (2.20)

Such a treatment is generally referred to as an M-scheme basis.

While any basis satisfying the former requirements could be used, we choose the HO basis

with good total single-nucleon angular momentum j as our single-particle basis, which we define

in the following section. We truncate the many-body basis for a given calculation using the cutoff

parameter Nmax, which denotes the maximum total number of HO excitation quanta allowed in

any state of the many-body basis above the minimum number of energy quanta, N0, required by

the Pauli exclusion principle for the given nucleus. We calculate the number of energy quanta

Nν in a given many-body state ν by summing the principle quantum numbers Nνi of all occupied

single-particle states, and only include many-body states satisfying

Nmax ≥
A∑
i

Nνi −N0 =

A∑
i

(2nνi + lνi)−N0, (2.21)

where nνi and lνi are the radial and angular momentum quantum numbers of the single-particle

state νi, respectively. Naturally, the former inequality similarly truncates the single-particle basis

states that may be occupied, and, in turn, the maximum possible mj of those states.

Meanwhile, we control the scale of the HO wavefunctions by setting the parameter ~Ω, where, as

mentioned before, Ω is the HO strength parameter defining the single-particle basis’s length scale.

The same basis scale applies to all basis states in a given calculation. With our many-body basis

defined thus, we move to the task of defining our single-particle basis.

2.1.2.2 The single-particle HO basis

We adopt the common choice of the HO basis for its well-studied finite basis effects, analytical

properties, and several other convenient features. We denote the single-particle HO state as |φspα 〉

with quantum numbers α ≡ {n, l, s , j, mj}, where n, l, s, j, and mj , correspond to the radial,

angular momentum, spin, total angular momentum, and total angular momentum projection, re-
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spectively. Since we treat neutrons and protons separately, we do not include the isospin quantum

numbers in our single-particle basis. When constructing the basis, we order single-particle HO states

lexicographically by ascending N , n, l, j and mj , sorted in that order.

To define the full single-particle HO wavefunctions, we first consider just the spatial part of the

states, and solve the time-independent Hamiltonian eigenvalue equation for a single particle in a

HO potential (
p̂2

2mN
+

1

2
mNΩ2r̂2

)
|φspα 〉 = Eα|φspα 〉 , (2.22)

where Eα is the eigenenergy associated with the HO basis state |φspα 〉, and r̂ and p̂ are the nucleon’s

position and momentum operators, respectively. The coordinate space solution to this equation is

well-known and takes the form

φspnlml(r, θ, ϕ) = 〈r θ ϕ|n lml〉 = Nnl
Rnl(r)

r
Ylml(θ, ϕ), (2.23)

where Nnl is a normalization constant, Rnl is the radial function, and Ylml is a spherical harmonic.

We define the radial function1

Rnl(r) =
(r
b

)l+1
exp

(
− r2

2b2

)
L
l+ 1

2
n

(
r2

b2

)
, (2.24)

where b ≡
√

~
mNΩ defines the basis’s length scale, and L

l+ 1
2

n is a generalized Laguerre function

defined by the Rodrigues formula,

L(k)
n (x) = x−k

(
d
dx − 1

)n
n!

xn+k . (2.25)

Defining the dimensionless coordinate ρ ≡
(
r
b

)2, we may conveniently re-express the spatial part of

the wavefunction

φspnlml(ρ, θ, ϕ) =
Nnl

b
ρ
l
2 e−

ρ
2L

l+ 1
2

n (ρ)Ylml(θ, ϕ) . (2.26)

1Note we have defined our “radial function” as a unitless quantity. Despite being less intuitive, this proves very
convenient for demonstrating both useful properties of the HO basis and in the derivation of operator matrix elements.
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where one can determine Nnl =

√
2
b

n!

(n+l+ 1
2)!

satisfies the normalization condition.

Taking a brief detour, one notices a symmetry exists in the HO Hamiltonian between the mo-

mentum and position operators, specifically in that they are both quadratic. If one were to perform

a Fourier transform on the spatial wavefunction defined in Eq. (2.26) or repeat the derivation from

Eq. (2.22) but in momentum space, one would find the HO basis possesses a convenient feature: the

solutions to the wave equation in momentum space possess an identical form as those in coordinate

space, save for the argument ρ being re-scaled. That is, if we instead define ρ ≡
(p
b

)2, b ≡√mNΩ
~ ,

and include an overall phase factor of i2n+l, Eq. (2.26) becomes the HO solution in momentum

space. This is a key feature of the HO basis, and one we will later use advantageously.

Returning to our goal of defining the single-particle basis, we must next include the spin part

of the nucleon’s wavefunction. For a single nucleon, this will always take the form of a Pauli spinor

χsms with spin s = 1/2 and spin projection ms = ±1/2.

Finally, we express our single-particle basis with good j using a change of basis, and define our

complete basis state wavefunctions

φspα (ρ, θ, ϕ) =
∑
ml,ms

(l ml sms|j mj)φnlm(ρ, θ, ϕ)χsms (2.27)

where ml is the angular momentum projection, and(l ml sms|j mj) denotes a Clebsch-Gordan (CG)

coefficient following the Condon-Shortley convention.

2.1.2.3 Many-body basis and operator construction

We define our specific implementation of the described many-body basis when evaluating the

many-body Hamiltonian matrix. When constructing the basis for practical calculation, we designate

each single-particle state by a unique integer index, and represent many-body states as ordered

arrays of these indices. We use the term “orbital” to refer to the subset of single-particle states with

the same n, l, and j (but different mj). We in turn use the term “many-body orbital state” (or
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Figure 2.1 Left panel presents the 6He ground-state energy as a function Nmax for various
basis scales distinguished by color. Points denote NCCI results, while lines de-
note local fits of Eq. (3.8) to the NCCI results of the corresponding color. Dotted
lines designate least-square fits performed independently from other basis scales,
while solid lines denote the fits fixed by the global extrapolation described in
Section 3.2. The right panel provides the same NCCI results but now varying
with HO basis scale, where connected points share the same Nmax. The flat
black and red lines denote the experimental result and the global extrapolation
A5 result, respectively.

“MBO state”)2 to refer to the subset of many-body states where the orbital of each single-particle

state remains constant.

Combining the many-body states into MBO states allows coarse-grain checks of the common

single-particle quantum numbers during matrix construction. Such checks allow us to determine

if the entire intersection, or “tile”, of a row MBO state and column MBO state will be filled with

zeroes. For a 2N (3N) potential, this occurs whenever the MBO states differ by more than two

(three) orbitals. For the kinetic energy operator (and any other operator), this occurs whenever the

MBO states violate the operator’s selection rules.
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2.1.3 NCCI many-body calculation

With our theoretical framework defined, we are at last in a position to describe our NCFC

many-body calculation. Before we begin however, it is useful to consider some actual results, as it

helps establish the context and motivations of the upcoming discussion.

One of the most common nuclear observables pursued by ab initio methods (and Nuclear Struc-

ture in general) is the nuclear binding energy, as modeling the eigenstates of the nuclear Hamiltonian

accurately is a necessary step for calculating any other nuclear observable. To provide an example,

we consider the results depicted in Fig. (2.1), which shows the ground-state energy of 6He using

the JISP16 potential [11], a soft (i.e. strongly-diagonal), 2N potential that provides high-accuracy

2N scattering results and converges faster compared to many alternative potentials when model-

ing light nuclei. On the left we see how the ground state energy converges as Nmax increases for

various choices of basis scale, which are distinguished by color. The points denote the results of

NCCI calculations, while lines denote an NCFC extrapolation using the results of the corresponding

color. On the left, the same NCCI results are plotted but now with varying basis scale ~Ω, where

connected points all share the same Nmax basis cutoff. In both plots, the red and black horizontal

lines represent an extrapolation using all the NCCI results fit with solid lines and the experimental

result, respectively.

While there is a great deal of physics to be discussed in these figures, there are two primary

observations to make at present. First, focusing on just the NCCI results, it is clear that even for

just the A = 6 system using a soft potential, several steps in the basis cutoff Nmax are required

before the NCCI results become a reasonable approximation of the nucleus’s ground-state energy

(it generally requires even higher Nmax before the wavefunction has converged). Indeed, we see the

NCCI results depend strongly on Nmax for low basis cutoffs, and do not come within 10% of their

converged value until around Nmax = 10, even at the optimal basis scale. Beyond a few exceptions

(such as magic nuclei), the convergence rates of larger nuclei generally tend to be either roughly

similar or slower to converge given the same nuclear interaction, such as can be seen from the 12C
2It should be noted that the term “MBO state” is purely an invention of this work and does not appear in the

literature.
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and 16O results using JISP in Ref. [12]. While the Nmax cutoff required varies both on the potential

being used as input and the operator observable in question (the reasons of which will be explored in

Section 3.1), one fact is clear: multiple steps in the basis cutoff are generally required for meaningful

NCCI results.

Second, we see the trends of the ground-state energy remain very consistent, converging mono-

tonically from above. This can be seen as a consequence of the variational principle, which guaran-

tees that the approximation of the nuclear Hamiltonian’s ground state can only be improved by the

addition of more basis states3. The combination of this consequence of the variational principle and

the trend’s simple functional form make extrapolations to the continuum very effective for NCCI

ground-state energy results, and represents one of the primary methods in which NCFC methods

work to improve upon NCCI calculations. This shall be further discussed in Section 3.2.

Having established some of the context of NCCI calculation, we now move to describe its meth-

ods in greater detail. Specifically, we discuss aspects of the computational challenges involved in

performing NCCI calculation, and describe some of the current methods by which they are overcome.

In most cases we will consider these matters through the lens of NCSM calculation performed using

the NCCI code “Many Fermion Dynamics for nucleons” (MFDn), though much of the discussion

extends to all NCCI calculation in general.

MFDn is a hybrid MPI-OpenMP Fortran code optimized for solving the NMBP, and possesses a

long history of high-precision ab initio results for light nuclei that spans well over two decades. The

research code is constantly maintained for efficient operation on modern leadership-class supercom-

puters, and significant developments for extending its capabilities are currently underway (aspects

of which will be further commented on in Section 2.1.1). While discussing the technical details of

MFDn’s current implementation are outside our intended purposes here and won’t be addressed

directly, many aspects of its treatment (and those of High-Performance Computing in general) will

be used in our description of how NCCI calculations are performed.
3This statement is not to say that NCCI ground-state energy results cannot converge to values below experiment;

only that if they do, it is a consequence of the effective potential being used and not the approximation of the
wavefunction.
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The field of HPC is expansive and a subject we cannot hope to address here in full. Indeed,

even just a complete description of the challenges faced by MFDn’s HPC implementation and its

solutions proves a formidable task that has instigated numerous works [13–15]. However, in order

to both define the high-performance NCSM calculations being performed in this work and explain

the motivations of the NCFC methods that will be described in Chapter 3, some amount of context

regarding NCCI calculation is required. Thus, in this subsection we shall approach these topics not

with the intent of completely defining the complex challenges and solutions they involve, but rather

with the goal of establishing a broad perspective on what NCCI calculations generally entail.

We begin by explaining the key features of the nuclear Hamiltonian that make NCCI calculation

so challenging and establish a sense of the method’s limitations. We proceed to review what imple-

menting these calculations on HPC platforms generally involves, some of the common problems that

arise there, and some of the general strategies by which they are overcome. Next, we define some

of the particular details that distinguish MFDn’s implementation and the calculations performed

in this work. Finally, we conclude this section by reviewing some of the techniques used to improve

and extrapolate these results in NCFC methods.

2.1.3.1 Computational Challenges of the NCCI Hamiltonian

So far we have already seen the significance of the basis cutoff on NCCI results and the subsequent

need for larger bases. However, solving for the eigenstates of the Hamiltonian matrices formed by

the NCCI treatment described in Subsection 2.1.3 often proves a formidable task for larger Nmax,

and constitutes the primary limitation of what systems NCCI methods can accurately model. This

is primarily a consequence of the extremely rapid dimensional scaling of the nuclear Hamiltonian

matrix as Nmax and A increase. Indeed, despite the enormous strides forward that have been made

since NCCI calculation first became viable, the majority of nuclei consisting of more than 20 nucleons

or so remains largely unreachable for accurate NCCI modeling on present-day supercomputers.

To demonstrate this fact, we consider Fig. (2.2) as presented in Ref. [17], which illustrates both

the rapid increase in the many-body Hamiltonian matrix’s dimension as Nmax increases for several
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Figure 2.2 Dimensionality (left) and number of nonzero matrix elements in the lower tri-
angular portion of the symmetric matrix (right) for light nuclei with the same
number of protons and neutrons (i.e., Z = N), with nuclear angular momen-
tum projection MJ = 0 and fixed parity PP . Figure and caption taken from
Ref. [16].

light nuclei on the left, and, in turn, the rapid increase in the number of nonzero elements (nnz) as

the dimension increases on the right. The impact of including 3N forces is shown by the differences

of dashed and solid lines of the same color in the right panel. While more powerful supercomputers

are and continue to become available and the efficiency of NCCI codes continues to be developed,

the rate of their improvement still remains too small for the computational limitations exemplified

by Fig. (2.2) to be completely resolved in the foreseeable future under current NCCI strategies.

Beyond the rapid dimensional scaling that leads to unfeasibly large matrices, NCCI Hamiltonians

possess several other distinct features. First, the matrix is Hermitian, which means the total number

of matrix elements being considered can be reduced by (nearly) a factor of two by using only the

upper or lower triangle of the matrix. Second, the matrix is sparse, though the density of the nnzs

becomes irregular under the standard lexicographical ordering of MBO states. These features in

conjunction with the matrix’s size makes these calculations a prime candidate for sparse matrix

multiplication methods.
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2.1.3.2 Performing NCCI calculation on HPC Platforms

Despite these rather daunting challenges, the progress of NCCI calculation over the past few

decades has been extremely rapid in the context of the history of Nuclear Structure. This has

primarily been the result of the rapid growth of computational resources, the continued improvement

of HPC methods, and certain revolutionary developments in how Nuclear Theory is approached.

Here we will focus on defining some of the modern methods employed to perform NCCI calculation.

Though we will largely focus on the methods implemented in MFDn as that is the CI code used

for the NCSM calculations performed in this work, many CI codes (Antoine [18], BIGSTICK [19],

KSHELL [20], NuShellX [21], to name a few) face problems and employ methods that are similar

or in some cases identical to those described here.

One of the primary challenges NCCI calculation faces is the construction and storage of the

Hamiltonian for performing matrix operations, since, as seen in Figure (2.2), the matrix being

solved is usually far too large to construct in a reasonable time frame on a typical university

computer system. To give an explicit example, we consider the 18F nucleus, which is of significant

importance in the radiopharmaceutical industry. The memory required by MFDn to store the full

18F Hamiltonian matrix using a 2N and 3N interaction at Nmax = 6 is roughly of the order of

1013 nnzs, which, stored in single precision (i.e. 8 digits), requires on the order of 100 Terabytes of

physical memory. This of course does not include the memory required for solving and storing the

eigenvectors, nor does it yet reflect the enormous number of floating point operations (flops) the

calculation consequently requires.

While other reasons exist, the matrix’s immense memory requirement and the calculation’s

colossal number of flops are sufficient to demonstrate that most modern NCCI calculations must be

performed on supercomputers comprised of a large network of distributed memory multiprocessors,

referred to as “nodes”, working in parallel. Each node possesses its own memory and CPU(s), which

are in turn comprised of multiple parallel processing cores. Information can be transmitted between

nodes through the larger network, most often by using the Message Passing Interface (MPI) library

standard.
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Using these parallel platforms to efficiently perform large-scale calculations is the primary goal

of High-Performance Computing, and proves a challenging and complex task that has instigated the

development of its own field in Computer Science. While discussing most of the technical details of

HPC is outside our goals here, we will now establish some of the pervasive difficulties most relevant

to CI codes, as they help explain aspects of the code’s design. Specifically, the use of an HPC system

introduces several new challenges, such as the risk of poor load-balancing. That is, if the division

of the computational workload is much heavier on some nodes than it is on others, this tends to

lead to poor performance as the underworked nodes spend significant amounts of time idle, or can

even crash the parallel calculation (called a “job”) if more data is allocated to a node than it has

available memory. Another common class of problems seen in HPC calculations is communication

bottlenecks, where, because a node’s calculation depends on the data being stored or solved on

another node, the node (or at least a subset of its processors) will sit idle while it waits to receive

the data.

NCCI approaches overcome these challenges with a number of strategies. For the Hamiltonian,

many CI codes resolve the problem of memory by recomputing parts of the matrix locally (or “on the

fly”) as they become needed in the calculations of a given node (or more generally, a separate memory

domain or “MPI rank”). This can make the calculation far less memory intensive, but poses new

problems, such as how the reconstruction often becomes time-consuming for iterative eigensolver

methods. In MFDn, the full matrix is instead partitioned and arranged on a two-dimensional

(2D) grid where only the matrix elements in the lower triangle of the many-body Hamiltonian are

distributed to reduce the memory footprint. This is done before the iterative method begins, and

consequently requires that the total number of distinct memory domains (i.e. “MPI ranks”), NR,

must satisfy

NR =
i(i+ 1)

2
, (2.28)

for some positive odd integer i ∈ Nodd. This ensures each of the resulting submatrix’s dimensions

are roughly equal on each MPI rank, which is important for load-balancing.
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The irregular sparsity pattern of the nuclear Hamiltonian poses another problem for good load-

balancing, as a naive division of the matrix into simple blocks would usually result in some blocks

containing no nnzs while others contain mostly nnzs. In MFDn, this is resolved by distributing the

row and column MBO states (described in Subsubsection 2.1.2.3) to each MPI rank in a “round-

robin” fashion, as this helps to spread out the dense and sparse parts of the matrix.

Once the matrix is successfully constructed in memory, the diagonalization process may begin.

As discussed before, the prodigious size of the matrix makes any complete diagonalization scheme

impractical. Moreover, only the lowest-lying eigenstates are generally of any interest. Thus, an

algorithm that can identify and accurately determine just this subset of eigenstates is required.

While often specialized to the problem being solved, the core of most NCCI algorithms involve

projecting onto a Krylov subspace, which is usually done with some form of the Lanczos algorithm

(specifically, the Hermitian Lanczos algorithm).

The Lanczos algorithm is a common choice of eigensolver for large sparse matrices for a number

of useful features, but most often for its low memory footprint compared to other methods, its

capacity to solve only a subset of eigenvectors, and it’s potential for parallelization. In particular,

the process involves only matrix-vector (and, less importantly,vector-vector) products, which makes

it much faster (running in O(n2) time) than methods relying on matrix-matrix products (such as

the QR method, which runs in O(n3) time). A simple version of the Lanczos algorithm is shown to

provide a well-defined example, see the simple form of the Algorithm (1).

The Lanczos algorithm is itself a variant of the power iteration algorithm, where one repeatedly

multiplies an initial (often random) pivot vector by a matrix until the pivot vector converges to

one of that matrix’s eigenvectors. The Lanczos algorithm is distinguished by its use of information

between iterations to construct a tridiagonal matrix that possesses the same eigenvalues as the

effective Hamiltonian, and a collection of “Lanczos vectors” (i.e. a Krylov subspace) that may be

used on the tridiagonal matrix to determine the effective Hamiltonian’s eigenvectors.

By periodically calculating the eigenvectors that have been solved for between Lanczos iterations,

one observes that the eigenvectors for the lowest-lying eigenstates converge the fastest, and are
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Algorithm 1 The Lanczos Algorithm
1: procedure Lanczos(matrix H,vector v1) . returns subset of H’s eigenpairs
2: α, β, v ← {} . 3 empty lists for collecting info
3: v0 ← 0 . Skip initial orthogonalization at first
4: i← 0 . Iteration index
5: isConverged← false . Initialize the loop’s exit boolean
6: while isConverged is false do
7: i← i+ 1
8: ωi ← Hvi − βivi−1 . Get new vector
9: αj ← ωi · vi . Get overlap with current Lanczos vector

10: ωi ← ωi − αivi . Orthogonalize new vector for new Lanczos vector
11: βi+1 ← ||ωi|| . Get normalization constant of new Lanczos vector
12: vi+1 ← ωi

βi+1
. Normalize new Lanczos vector

13: v ← v ⊕ {vi} . Append current Lanczos vector for later
14: α← α⊕ {αi} . Append current overlap α for later
15: β ← β ⊕ {βi+1} . Append new normalization constant β for later
16: Update(isConverged) . Check for the exit condition (see text for common options)
17: end while
18: T =TridiagonalMatrix(α, β) . α→ diagonal, β → off-diagonals
19: eigenvalues =Eigenvalues(T )
20: eigenvectors = Transpose(v)Tv
21: return {eigenvalues, eigenvectors}
22: end procedure

therefore more likely to appear after each iteration than the higher energy spectral states. This

may be viewed as largely the consequence of nuclear spectra being increasingly dense for higher

excitations. Thus, so long as the number of Lanczos iterations is far larger than the number of

desired eigenstates, the chances that the desired states won’t appear vanishes, and the accuracy of

the lowest-lying eigensolutions can be gauged by how well-converged the results become.

The usual drawback of the Lanczos algorithm is that it eventually becomes unstable. Specifically,

the process diverges when the pivot vector becomes too close to an exact eigenvector ofH, as then the

following Lanczos vector is dominated by noise, and its corresponding βi becomes very small. The

most obvious case this happens is when the number of iterations exceeds the number of dimensions

in the matrix, as then more vectors will be solved for than there are eigenvectors of the system. The

more subtle way this can happen is if the initial pivot vector (usually chosen at random) happens

to be orthogonal to a large number of the systems eigenvectors.
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Fortunately, in the case of extremely large, Hermitian matrices like the NCCI Hamiltonian, the

number of iterations is so much smaller than the dimension of the matrix that the instability of

the Lanczos algorithm is rarely ever a concern. Similarly, the chances of the initial pivot vector

being problematically close to orthogonal to one or more of the lowest-lying eigenvectors is also

vanishingly small (though numerical noise combined with an extremely dense spectrum can make

it less so).

Still, the iterations have to be stopped before the process becomes unstable. This is generally

done by setting an iteration limit, a minimum size of βi, both, or some other convergence metric,

and is reflected in the provided algorithm by the boolean condition isConverged being updated by

an unspecified function. In the case of CI codes, one common strategy is to check the convergence of

the energy eigenvalues after each iteration, but it has been observed that this often doesn’t guarantee

the eigenvectors are well-converged. Since the eigenvectors are important for solving other operator

observables, MFDn instead checks the convergence of the eigenvectors themselves, though at a lower

frequency.

Otherwise, the variations on (or alternatives to) the Lanczos algorithm that appear in NCCI

implementations tend to focus on ensuring the results are well-converged and improving the ef-

ficiency of the process, particularly for the use on HPC parallel platforms. For instance, in one

of its eigensolvers, MFDn implements a Locally Optimal Block Preconditioned Conjugate Gradi-

ent (LOBPCG) approach, which can boost performance by allowing multiple Krylov vectors to be

calculated during each iteration, and is the primary topic of Ref. [16].

While much more could be said as to the complex challenges involved in NCCI implementations

on HPC platforms, the former serves our purposes of establishing some of the key problems that

motivate how NCCI calculation is approached, and orients us for our discussion of the NCFC and

renormalization methods that work to improve the reach of NCCI calculation.
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2.1.4 The role of NCCI many-body calculations

In this section, we have established the context of contemporary NCCI calculation, defined our

many-body NCSM formalism, and broadly described many of the challenges and solutions common

to the approach. We close our discussion of NCCI calculation by offering some perspective on the

role NCCI calculation has and continues to play in the greater scope of Nuclear Structure. We

review some of the key issues of NCCI calculation, and describe how they lead us to our upcoming

discussion of the NCFC tools that augment NCCI results.

Despite being restricted by the explosive growth of the computational resources they require,

NCCI many-body calculations and other ab initio calculations like them serve a vital role in both

the short and long-term goals of contemporary Nuclear Structure. First, the high-precision results

for few-body systems they provide make them the premier tools for examining light nuclei. In the

greater scheme however, ab initio approaches stand as the gatekeepers sitting between the shift

from quarks and gluons in QCD and the effective treatment of nucleons. On one side stands the

lattice approaches which can accurately describe the underlying theory used by χEFT to define the

realistic interactions all Nuclear Structure models will rely on. On the other side stand the effective

models that approximate the “full” many-nucleon problem in ways that make it possible to perform

calculations for heavier nuclei, at the cost of general applicability.

Thus, ab initio approaches play a critical role in connecting these two disparate scales by pro-

viding benchmark calculations for the realistic interactions being developed, the results of effective

models for larger nuclei, and the effective methods being employed in both. In essence, if EFT is

the bridge spanning the ocean between these two scales, then ab initio calculation is the pillar that

holds its center aloft.

2.2 NCSM in the relative center-of-mass basis

Having established the necessary context of NCCI calculation and Nuclear Structure in general,

we now turn to the topic of the effective methods that allow us to augment NCCI results. In the

process of developing these methods, it is useful to have a computationally simple test case for
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benchmarking the effective nuclear interactions, methods, and theoretical treatments. Before we

consider the 3N cases of these effective methods, we must first do so for the 2N versions. Thus, the

simplest system to test these methods is naturally the 2N system.

In the 2N system, only the 2N interaction contributes, and Eq. (1.7) reduces to

H2 =
(p1 − p2)2

2µ
+ V2N , (2.29)

where µ = mN
2 = 938.92

2
MeV
c2

is the reduced mass. Naturally, one could proceed from here to solve

the problem exactly, but doing so would provide no insight for NCCI methods in larger nuclei.

While our many-body formalism is necessary for larger systems, it becomes somewhat cum-

bersome and inefficient in the 2N case. In addition, the problem may be even further reduced by

transforming to Jacobi coordinates. Thus, in this section we derive a second NCSM treatment

restricted to the 2N system using HO wavefunctions defined in the relative-cm (rcm) 3DHO basis,

which will be the formalism used in the discussion of effective methods in Chapter 3.

We proceed to define our rcm formalism of the 2N system. We begin by defining our two-

body relative coordinate system in Subsection 2.2.1. In Subsection 2.2.2 we define the 3DHO basis

formalism to be employed.

2.2.1 Relative-cm coordinates

We consider the general two-particle system. Denoting their spatial vectors ~r1 and ~r2, we define

the relative coordinates
~R = 1

2(~r1 + ~r2)

~r = ~r1 − ~r2

(2.30)

where ~R is the center of mass (cm) spatial vector, and ~r is the relative distance between nucleons.

Similarly, for nucleon momenta ~p1 and ~p2, we define

~P = ~p1 + ~p2

~p = 1
2(~p1 − ~p2)

(2.31)
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where ~P is the cm momentum, and ~p is the relative momentum of the two particles. This is generally

considered the “mechanics” convention, and will be used throughout this work.

In our discussion of χEFT, we will need to discuss cases of momentum transfer with external

probe. In these cases, we shall distinguish coordinates after interacting with the probe with (for the

case of momentum ~p) ~p’. We also introduce the the additional parameter ~q = ~p′ − ~p to denote the

momentum transfer with the external probe.

2.2.2 The relative-cm three-dimensional harmonic oscillator basis

We define our rcm basis formalism. Where possible, we refer to the derivation of the single-

particle HO basis in Subsubsection 2.1.2.2.

For 2N systems throughout this work, we assume the relative and cm solutions are separable

and expand each in the HO basis separately. Thus, we expand the rcm two-body wavefunction in

the basis

|φi〉 =| (nrlr;nclc) l s j mj tmt〉 , (2.32)

=
∑
ml,ms

(l ml sms|j mj) | (nrlr;nclc) l ml〉| sms〉|tmt〉 , (2.33)

=
∑
ml,ms

(l ml sms|j mj)

 ∑
mlr ,mlc

(lrmlr lcmlc |l ml) |nrlrmlr〉|nclcmlc〉

 | sms〉|tmt〉 , (2.34)

where n, l, s, j, and t denote the 2N coupled radial, rcm angular momentum (i.e. ~l = ~lr + ~lc) ,

spin, total angular momentum (i.e. ~j = ~l+~s), and isospin quantum numbers. We denote projection

quantum numbers with m, where the subscript denotes the associated quantity. When required, we

distinguish relative and cm quantities with the script r and c, respectively.

We define the relative motion in HO basis states that are solutions to

Hrel|φri 〉 =

(
p̂2

2µ
+

1

2
µΩ2

r r̂
2

)
|φri 〉 = Eri |φri 〉 , (2.35)
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while we define the cm motion in states that are solutions to

HCM |φci 〉 =

(
P̂ 2

4mN
+mNΩ2

cR̂
2

)
|φci 〉 = Eci |φci 〉 . (2.36)

Naturally, the solutions to both of these equations are identical in form to Eq. (2.26), which we

reproduce here for convenience using the generic form

φnlml(ρ, θ, φ) =
Nnl

b
(ρ)

l
2 e−

ρ
2L

l+ 1
2

n (ρ)Ylml(θ, φ) . (2.37)

The relative states require the substitutions ρ ≡
(
r
b

)2 and b ≡
√

~
µΩr

for the coordinate-space

solution and ρ ≡
(p
b

)2 and b ≡
√

µΩr
~ for the momentum-space solution. Similarly, the cm states

require ρ ≡
(
R
b

)2 and b ≡
√

~
2mNΩc

in coordinate space, and ρ ≡
(
P
b

)2 and b ≡
√

2mNΩc
~ in

momentum space.

We express the coupled spin wavefunction for the 2N system with the Pauli spinor χsms where

s = 0(1) and ms = 0(0,±1) for the spin singlet (triplet). The singlet is antisymmetrized with the

Slater determinant

χ00 = |0 0〉 =
1√
2

∣∣∣∣∣∣∣
S1(1) S2(1)

S1(2) S2(2)

∣∣∣∣∣∣∣ (2.38)

where Sk(i) is the kth single-nucleon spin state occupied by the single nucleon i. The coupled

isospinor χtmt is handled in an identical fashion.

In most cases, we will only need to consider the relative motion, and will therefore ignore the

cm component unless otherwise specified. Similarly, we will relax our notation by suppressing the

cm quantum numbers and relative subscript in such cases, i.e.

| (nrlr;nclc) l s j mj tmt〉 → |n l s j mj tmt〉 , (2.39)

where it is understood that only the relative motion is being considered.
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2.2.3 Numerical NCSM methods in the relative 2N system

We describe our numerical methods for performing NCSM calculation in the relative 2N system.

With the problem reduced to a single relative coordinate and subsequently no need for a many-body

basis, the rapid growth in basis dimension faced in many-body NCSM calculation becomes linear.

Further, since the basis in which the Hamiltonian (and other operators) is expanded is well-defined

in j and several other quantum numbers, a greater set of selection rules may be applied to reduce the

basis under consideration. In the case of the Hamiltonian, this means only at most two (coupled)

channels (where a channel is a single set of coupled angular momentum, spin, and isospin quantum

number) need to be considered for the purposes of diagonalization.

For instance, to solve the deuteron ground state, one needs only consider elements of the

(3s1 −3 d1) coupled channel when constructing the Hamiltonian, where we’ve used the channel’s

spectroscopic notation. The resulting basis dimension becomes Nmax + 1, and NCSM calculations

can easily be performed at Nmax currently impossible for many-body systems.

Thus, with performance being far less of a concern, much more freedom is allowed in the explo-

ration of the problem and the impact of effective methods. To conduct such analysis, we perform

calculations using Mathematica 11 for its convenient use, significant support community, and in-

teractive coding environment. We use the standard diagonalization techniques to determine all

eigensolutions of the Hamiltonian matrix, and perform all calculations at double precision unless

otherwise specified.
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CHAPTER 3. BASIS REGULARIZATION AND ITS CORRECTION

The physics of the Universe functions at all scales simultaneously and coherently, but attempting

to model physical phenomena in the same way is a daunting and generally unfeasible task. Moreover,

the approximate independence of physical laws at different scales makes such an endeavor very

unappealing and largely unnecessary. Indeed, one would be woefully hard-pressed to use QCD to

predict, say, the trajectory of a boulder thrown by a trebuchet. Similarly, the forces of gravity are

largely irrelevant to modeling how a nucleon is held together.

Thus, when constructing models historically, scientists have always defined (often implicitly)

the scales at which a model will be effective. After all, one doesn’t need to know how the particles

that make up a boulder interact to model its macroscopic projectile motion, and trying to define

such motion at the level of quark interactions would be an enormous and grossly unfeasible effort.

Naturally then, restricting the scales of our models is only sensible, and largely required for their

feasibility. For a long time, the assumption was that accurate model treatments should (and always

“could” for that matter) represent a subset of physical phenomena correctly in a complete and self-

consistent way. If any nonphysical conclusions could be deduced, one assumed the model description

must be flawed somehow. It is only somewhat recently that the full ramifications of considering

only a limited range of scales have begun to be formally identified, and a more nuanced perspective

has developed.

In contemporary variational calculations of nuclear eigenfunctions, one aims to select a trial

wavefunction that best exploits the features of the Hamiltonian under investigation, and then adjusts

the basis parameters to optimize the resolution and consequently minimize the energy. Indeed, as

we’ve seen in Fig. (2.1), there is clearly a predictable pattern to how results are dependent on the

HO basis parameters. The effects of the FBA on the representation of wavefunctions, operators,

and (consequently) calculated observables are sometimes referred to as a form of regularization,



www.manaraa.com

50

while methods that counteract these basis truncation effects by redefining the operator matrix are

considered a form of renormalization. Both processes were historically important precursors to the

development of EFT.

The concepts of regularization and renormalization originally arose in the context of QFT, where

one modifies (or “regularizes”) the expression of divergent contributions from loop diagrams to an

observable by introducing a parameter (often called a regulator or cutoff) to make the contribution

finite. The regularized quantity remains divergent for certain values of the regulator, and is therefore

only considered physically meaningful within a certain interval of the regulator’s value. The classic

example is in QED where one tries to calculate the mass-energy of an electron and finds treating

it as a point particle would give it an infinite inertia. This therefore requires the introduction of

a regulator (that turns out to be the electron’s finite radius) for the calculation to be physically

meaningful.

Naturally, the process of regularization makes the contributions from loop diagrams dependent

on the regularization scale, and, being a model artifact, this is generally undesirable. Thus, regu-

larization is generally followed by renormalization to remove this dependence, where one recognizes

that the seemingly divergent terms are in reality the actual, measurable physical quantities, and

therefore one redefines (or “renormalizes”) these quantities. One standard example is considering an

electron with a given mass m in QFT. QFT dictates that there is a cloud of virtual particles around

the electron, and these virtual particles (and the interactions between them) make the electron

behave as though it has a different mass than originally stated. Thus, in this case, renormalization

serves to replace the original mass with a corrected mass and recognize that this “renormalized

mass” is the actual experimentally-measurable quantity.

While highly controversial for decades, the need for these methods in physical theories is now

generally viewed to reflect the limited scales the model is designed to predict, and that allowing the

introduction of regulators in a model is required to acknowledge the possibility of new/undescribed

physics at other scales the model doesn’t consider. In one sense then, the need for regularization can

be seen as a consequence of both incomplete knowledge and the attempt at modeling phenomena
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in a finite interval of scale. Put in a different light, the appearance of nonphysical terms are a

consequence of how representing physical phenomena within a limited range of scales is, in a very

real sense, an innately nonphysical treatment outside that limited range.

Returning to the topic of basis truncation effects, one might wonder what regularization has

to do with the FBA, as the two processes may appear somewhat unrelated. However, there is an

important parallel between the two: just as adding a regulator restricts what range of scales will

give physically meaningful results in QFT, the FBA (implicitly) restricts what range of scales the

basis expansion (and consequently the representations of wavefunctions and operators it is used

to define) will be physically meaningful. Thus, while the circumstances and motivations are very

different, the ultimate effect of imposing the FBA is the similar to imposing one or more regulators

(two in the HO basis), and this is why it is sometimes referred to as “basis regularization”. Similarly,

“matrix renormalization” in this context involves redefining operator matrices to better account for

the effects imposed by the aforementioned basis regularization.

While using this diction provides a convenient parallel to some well-understood Physics concepts,

there is an important distinction between the two that must be made: the process of regularization

and renormalization in QFT apply to models (i.e. the NMBP), whereas the basis regularization and

matrix renormalization we are considering are relevant to the model approach (i.e. the NCSM) used

to perform calculations. This may seem a minor distinction, but has become significant as different

computational approaches have been developed for solving the same model problem. Thus, while

we shall use these terms in the following, one should keep in mind how they are distinct from the

conventional forms of regularization and renormalization in Physics.

In this chapter, we shall discuss the significance of the FBA in Nuclear Structure and some of the

methods by which it may be compensated. We begin by examining the impact of the FBA on the 2N

system under the HO basis, and define the two regulators it imposes in Section 3.1. Next, we explain

how this formal description may be used in NCFC extrapolation to estimate the converged NCCI

results with a statistically-defined extrapolation uncertainty estimate in Section 3.2. We conclude
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the chapter by introducing two renormalization schemes for improving the convergence of observables

in NCSM calculation and investigate their implementation in the 2N system in Section 3.3.

3.1 Basis regularization and emergent scales in the 2N system

We define the presence of basis regularization in the example of the 2N system and define

the basis regulators used to describe it. Throughout, we shall focus on the radial part of the

wavefunction depicted in Eq. (2.24), as that is the part relevant to the scales for which the finite

basis (and thus the representations of wavefunctions and operators) is physically meaningful. We

shall switch between plotting in momentum and coordinate space depending on the scenario, though

the same observations can be made in either representation.

We first establish the sources of basis regularization and define regulators characterising the HO

basis in Subsection 3.1.1. Second, we describe emergent scales of the NMBP in Subsection 3.1.2.

3.1.1 Infra-red and ultraviolet regulators

The FBA, in the context of the HO basis, implicitly restricts the scales for which the represen-

tations of wavefunctions and operators are meaningful. Great strides in understanding the nature

of these effects have been made, and this understanding has been used to predict how the FBA

impacts observable results.

Before we consider 2N wavefunctions, we recall the behavior of the HO basis functions themselves

by considering the examples shown in Fig. (3.1), where we introduce the wave number k ≡ p/~. The

relevant region of what scales these functions can meaningfully approximate is defined by the domain

over which the oscillations occur. Borrowing some language used for the visible spectrum to facilitate

discussion, we refer to the left boundary in momentum space (i.e low-momentum or long-range) of

this domain the “infra-red” (IR) cutoff LIR of the function, and the right boundary in momentum

space (i.e. high-momentum or short-range) the “ultraviolet” (UV) cutoff ΛUV. Naturally, for plots

in coordinate-space, these two cutoffs will switch sides.



www.manaraa.com

53

1 2 3 4
k (fm-1)

-2

-1

0

1

2

Rnl HO s-wave (l=0) radial wavefunctions
(ℏΩ=10 MeV)

Rnl
R00
R10
R50

1 2 3 4
k (fm-1)

-2

-1

0

1

2

Rnl HO p-wave (l=1) radial wavefunctions
(ℏΩ=10 MeV)

Rnl
R01
R11
R51

1 2 3 4
k (fm-1)

-2

-1

0

1

2

Rnl HO s-wave (l=0) radial wavefunctions
(ℏΩ=20 MeV)

Rnl
R00
R10
R50

1 2 3 4
k (fm-1)

-2

-1

0

1

2

Rnl HO p-wave (l=1) radial wavefunctions
(ℏΩ=20 MeV)

Rnl
R01
R11
R51

Figure 3.1 Some example HO basis s-wave (left) and p-wave (right) radial wavefunctions
(Eq. (2.24)) with basis scale ~Ω = 10 MeV (top) and ~Ω = 20 (bottom) plotted
in momentum space in terms of wave number k. The n = 0, 1, 5 states are shown
in light red, yellow, and green, respectively. One observes increasing n extends
the active domain of the wavefunction in both directions, while increasing ~Ω
warps and shifts the active domain to the right (i.e. to larger energy scales).
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We can see that as both n and l increase (i.e. as Nmax increases), the domain of the oscillations

(and consequently the domain on which the basis expansion is physically meaningful) widens in

both directions. So the cutoffs associated with a given finite basis will depend on the highest HO

excitation in that basis. On the other hand, as ~Ω increases from the upper to lower plots, we see

the domain of the oscillations extend over higher momentum scales, and both ends of that domain

are shifted to the right.

While both Nmax and ~Ω are clearly functioning as “regulators” of the basis regularization,

it is generally more convenient to discuss regulators that define the explicit momentum scales in

which results using the finite basis are physically meaningful. Thus, we’d like to define the basis

regulators LIR and ΛUV corresponding to our choice of HO basis. To make such an estimate, one

can consider how the momentum of a classical particle in a HO state is largest at the origin, where

all the particle’s energy is kinetic. For the most excited state of a given basis, this would mean for

a particle of mass µ,

~2k2
max

2µ
= (Nmax + 3/2) ~Ω,→ kmax =

√
2 (Nmax + 3/2)

µΩ

~
, , (3.1)

where kmax is the maximum momentum. Similarly, we expect the same state to define a maximum

radial extent a classical particle cannot exceed when the state has only potential energy, or

rmax =

√
2 (Nmax + 3/2)

~
µΩ

, (3.2)

where rmax is the radial extent. We notice in these definitions that increasing Nmax increases both

quantities, while increasing ~Ω increases kmax, but decreases rmax. Looking back at Fig. (3.1), we

see rmax and kmax do indeed behave the same way as the domain boundaries of HO wavefunction

oscillations.

Since we wish to define outer limits for the scales of a basis, it is natural to define our basis

regulators a few shells higher than what is dictated by Nmax, which has been observed a better

estimate in a number of studies [1–4]. One generally does this by defining the quantityNi = Nmax+i,
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where i is an integer. In our case, we use i = 3 to mark the third shell higher than Nmax and the

corresponding extremes defined by Eqs. (3.1),(3.2). This value of i is observed in Ref. [5] to provide

better estimates of the IR and UV limits for light nuclei.

Thus, from these considerations we define the IR and UV HO basis regulators (where we adopt

the HO coordinate-space length scale definition b =
√

µΩ
~ ) :

LIR =
√

(2Ni + 3)b−1 , (3.3)

ΛUV =
√

(2Ni + 3)b . (3.4)

The basis regulators serve to define the scales a basis can meaningfully model wavefunctions and

operators.

The former description reflects many of the same arguments for defining the HO basis regulators

as provided in a series of closely related works [1, 2, 6, 3, 4, 7], and, barring some notational

differences, matches the basis regulators defined in Ref. [2, 5]. While we shall proceed with our basis

regulators defined thus, one should note that variations exist for them, as different arguments can be

made on what best defines the “physically meaningful” boundaries imposed by basis regularization.

The alternatives generally involve modifying the number of shells above Nmax one uses in the

regulators’ definition.

To demonstrate these regulators and better understand the basis regularization they entail,

it is useful to view some examples of extreme IR and UV basis regularization effects. Thus, we

consider two basis expansions of the deuteron ground-state wavefunction using a chiral N3LO po-

tential that has been renormalized to the scale of λ2N = 2.0 fm through SRG (a process discussed

in Subsection 3.3.2) in Fig. (3.2). On the left we see the well-converged deuteron ground-state

wavefunction alongside its heavily IR-regularized representation in coordinate space, and the same

wavefunction on the right except now alongside its heavily UV-regularized representation in mo-

mentum space. The vertical dashed lines mark the respective IR and UV cutoffs.

We see that the two basis regulators given in Eqs. (3.3), (3.4) appear to be fairly good estimates

for the limited scales a finite HO basis can meaningfully model. The oscillations leading up to
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Figure 3.2 Two cases of extreme basis regularization using the example case of the deuteron
ground-state wavefunction Ψ0 (black) when using N3LO chiral EM500 2N inter-
action [8]. Left panel shows the heavily IR-regularized representation ψIR (red)
of the deuteron ground-state wavefunction in coordinate space, while the right
panel shows the heavily UV-regularized representation ψUV (violet) in momen-
tum space. The basis parameters used are shown on the right side of each plot
in the corresponding color. Vertical, dashed lines mark the value for the given
basis of the regulators LIR (light red) and ΛUV (light violet), and defined by
Eqs. (3.4), (3.4). Their value is shown in the bottom right for the basis depicted
in the plot they appear.

the rapid falloff reflect the exaggerated weight for the highest basis function in the regularized

wavefunction. That is, since the most excited HO state is defined over the widest domain, it is

the only function that overlaps the scales closest to the cutoffs, and therefore its overlap with the

actual wavefunction appears unnaturally large due to the normalization condition. In essence, the

extreme basis regularization observed here can be viewed as the consequence of a poorly-conditioned

optimization problem, where one tries to recreate the wavefunction as best as possible with the basis

states available.

3.1.2 Emergent scales of the NMBP

When defining the boundaries of the HO basis regularization, we wish to capture what we

will call the “emergent scales” of the problem, by which we mean the scales that are of particular

significance to the physical system being approximated. Naturally, the emergent scales are governed
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by the underlying dynamics given by the Hamiltonian, and are distinguished by their independence

from any model approach.

For example, if we define λ2N as the maximum momentum scale of a given 2N potential, it

follows that for an accurate representation of the wavefunction and potential, we at least require

λ2N < ΛUV . (3.5)

Similarly, one would expect the IR regulator should at least extend beyond the nuclear radius, RA,

or

RA < LIR . (3.6)

While reasonable estimates, the former conditions are, in practice, usually insufficient to guar-

antee converged Nuclear Structure results (particularly for the IR regularization). This is largely

the consequence of having defined our basis regulators from a classically-motivated description,

when, being of a quantum nature, nuclear wavefunctions and HO wavefunctions possess non-zero

asymptotic regions, or “tails”, in both coordinate and momentum space.

To discuss these effects, we will consider the momentum-space tail first. While the maximum

UV scale of nuclear potentials does not always fall off quickly, realistic interactions from χEFT and

SRG-renormalized interactions generally do have fast falloffs. This is because the former require a

built-in regulator during their construction to be physically meaningful, while the latter impose a

similar1 cutoff effect through a unitary scale transformation (which we describe in Subsection 3.3.2).

In both cases, the effective potential exhibits super-Gaussian falloff beyond the imposed momentum

cutoff, and consequently the UV convergence becomes rapid in momentum space once Eq. (3.5)

becomes satisfied. The subsequent corrections then primarily come from the much more gradual

falloff of the IR tail of the wavefunction in coordinate space.

Indeed, if we observe the plots of the ground-state energy in terms of ~Ω depicted on the right

panel of Fig. (2.1), one notices that the optimal ~Ω (i.e. the ~Ω giving the energetic minimum) for
1Though both methods impose a cutoff, note their impact on the potential in other ways is very different.
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a given Nmax starts at higher ~Ω values but drifts to lower values as Nmax increases. This reflects

how, once Nmax is large enough to capture the UV convergence, subsequent increases in Nmax will

shift the minimum to lower values of ~Ω to capture more of the coordinate-space tail, since the

additional shifts to the UV regulator granted by increasing Nmax are largely superfluous beyond the

potential’s momentum cutoff.

The aforementioned pattern is only part of the picture one usually sees in light nuclei, as what

one sees depends on both the potential and the range of Nmax being considered, and we’ve used a

very soft interaction. Specifically, In cases of “hard” interactions with significant high-momentum

correlations, the minimum usually first shifts to higher values of ~Ω before shifting back to lower

values as seen in Fig. (2.1). This is because the impact of the improved coverage over the UV tail

dominates in harder potentials at low Nmax, and the minimum only shifts back to lower values

once UV convergence is reached. Thus, because JISP16 is so soft, the effects of the improved UV

coverage initially only balances the effects of the improved IR coverage, and the initial shift of the

minimum to higher ~Ω values is suppressed. For more examples of this pattern and its discussion,

see Refs. [5, 6, 3].

Thus, we see the basis IR cutoff ultimately dominates the remaining basis regularization effects

at higher Nmax. However, defining a strict IR condition for the scale at which results will be

converged proves somewhat difficult. Specifically, one observes a new emergent scale of the problem

that makes the scale required for convergence potential- and state-dependent: the convergence of

a wavefunction will depend on its associated binding energy, as dictated by the usual quantum

mechanics considerations for the tails of bound state wavefunctions. That is, being a quantum

system, the coordinate-space tail of nuclear wavefunctions extend beyond the nuclear radius, and

only fall off exponentially. This differs significantly from the coordinate-space tails of HO basis

functions, which fall off rapidly and can be compared to the rapid fall-off at an infinite barrier or

“box” around the system.

The position of this effective barrier defines a new scale inherent to a finite HO basis, which can

be approximated by determining the slope of the most excited basis function at the boundary of
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Figure 3.3 Graphical description for a simple estimate of the cutoff scale of the HO tail.
The yellow line depicts an HO potential, while the blue depicts the correspond-
ing ground state. The dashed green line is the tangent of the φr1 at its intersec-
tion with the HO potential, which corresponds to the LIR cutoff. The tangent’s
y-intercept provides an estimate of where the HO tail begins falling rapidly.

the potential and using its tangent. For instance, if we consider Fig. (3.3) we see a HO potential

overlaid with its ground-state wavefunction. Clearly, taking the tangent of the wavefunction at the

boundary gives a fairly good estimate of the hard-wall cutoff of a quantum HO state. In truth,

such an estimate can be seen as just the NLO correction term of an expansion about the classical

boundary, and, as discussed in Refs. [6, 3], one arrives at a more accurate estimate of the IR HO

basis cutoff

Lt ≈ LIR + 0.54437b 6
√

(2Nmax + 3) . (3.7)

So far we have only considered the cutoff in the context of the single-particle basis, and neglected

any dependence on the details of the NCSM many-body basis. Instead, one can define a very precise

IR length scale for the basis by equating the lowest eigenvalue of the intrinsic kinetic energy of the A-

nucleon system in the NCSMmany-body basis to that of A-nucleons in a 3(A−1)-dimensional hyper-

radial potential well, with a Dirichlet boundary condition for the corresponding hyper-radius. Being

A-dependent, this process doesn’t involve a closed-form expression like the former, and instead must
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be determined through numerical calculations evaluated for a given system. While this approach

won’t be further discussed here, it proves remarkably effective for extrapolations in light nuclei [7, 9].

Much more can be said regarding basis regularization and its various subtleties. For the purposes

of this work however, the former discussion serves to introduce all the relevant concepts that shall

appear in both studies provided in Chapters 4 and 5, as well as the upcoming description of NCFC

extrapolation.

3.2 NCFC extrapolation

We introduce the concept of NCFC extrapolation and its respective uncertainty estimation, and

define the extrapolation approach used in Fig. (2.1). We discuss the effectiveness of these tools, and

lay some of the foundations defining the extrapolations presented in Chapter 5.

One of the primary methods introduced by NCFC studies to augment NCCI calculation are the

extrapolation of observables to the continuum limit by fitting the results varying with regards to

the basis parameters under a specific functional form. Mentioned in Subsection 2.1.3, extrapolation

proves particularly effective for the ground-state energy, due to consequences of the variational

principle and the simple dependence on Nmax and ~Ω.

Multiple functional forms exist for extrapolating NCCI results for the ground-state energy,

though the most recent are generally rooted in the study of basis regularization from the FBA

[2, 6, 3]. Furthermore, while not discussed in this work, recent strides have generated ground-state

energy and r2 extrapolations through the use of artificial neural networks (ANNs) [10].

To discuss NCFC extrapolation, we consider the basic example provided by Fig. (2.1), which

implements an extrapolation based on “extrapolation A5” described in Refs. [11, 9]. In this imple-

mentation, the extrapolation involves fitting the NCCI ground-state binding energy results with the

functional form

f (Nmax) = a+ b · e−cNmax (3.8)
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where a, b, and c are fit parameters. The process involves performing a weighted χ2 approach,

which, in essence, uses the results at different basis scales simultaneously to form multiple fits that

all converge to the same value. The fitting procedure for the global extrapolation proceeds as

follows:

1. All results associated with Nmax = 0 are removed from consideration.

2. The basis scale (denoted here as ~Ω0) that gives the minimal eigenstate energy out of all the

NCCI results being considered is identified.

3. Five results associated with basis scales ~Ω0 + 2.5i for integers 1 ≤ i ≤ 5 are retained for

the global extrapolation; all other results are removed from consideration. The starting Nmax

result is set to N0 = 2.

4. The results for ~Ωi are used in a least-squares fit to Eq. (3.8), and the resulting bi and ci

fit parameters are retained for later use as the initial values in the global extrapolation. The

average is taken of the five a values obtained, and is similarly retained as the initial value of

the converged energy.

5. The ~Ωi results associated with basis cutoffs N0 +2j for 0 ≤ j ≤ 4 are identified. Each energy

result, Ei(Nj), with the exception of the Ei(N0) result, is weighted by the coefficient

wij

(
Ei(Nj)− fi (Nj)

Ei(Nj)− fi (Nj−1)

)2

, (3.9)

where fi (Nj) = a+ bie
ciNj . The Ei(N0) result is given the weight wi0 = 3wi1.

6. N0 is incremented by 2, and step 5 is repeated for all possible sets of five results with consec-

utive Nmax.

7. χ2 is expressed as the sum of all weights wij , and a is variationally minimized by adjusting

parameters bi and ci (10 variational parameters in total). The values determined in step 4 are

used as the parameters’ initial values, and constrained to 0.1% to 100,000% of that initial value
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during the minimization process. The resulting value of a is used as the globally extrapolated

energy.

8. Step 7 is repeated but now only with subsets of the same N0. Half the maximum difference

between the extrapolated values for a is used as the global extrapolation’s uncertainty.

The described global extrapolation approach proves a fairly good estimate for the converged energy,

and serves to demonstrate an example of what strategies NCFC extrapolations often involve. How-

ever, this particular example lacks some key features of those that appear in recent literature (that

both make it simpler to perform as an example, and shall serve to highlight these features). First,

the functional form, while broadly effective, does not reflect the extrapolations for the UV and IR

basis regularization explicitly, which is ultimately what is being modeled. Contemporary fits, such

as extrapolation A5 as described in Ref. [9], possess terms for the IR and UV basis regularization

and are based in their theoretical description. Second, the given choice of uncertainty is somewhat

arbitrary, and while it errs on the generous side, could potentially be better quantified by a stronger

statistical interpretation of confidence.

3.3 Renormalization

We define two forms of renormalization and examine their implementation in the 2N system.

First, we define and examine the Okubo-Lee-Suzuki (OLS) approach in Subsection 3.3.1. Second,

we define and consider the Similarity Renormalization Group (SRG) approach in Subsection 3.3.2.

3.3.1 Okubo-Lee-Suzuki renormalization

For the present study, we consider only the OLS formulation employed by Ref. [12]. For a more

complete discussion regarding the different effective Hamiltonian formulations and proofs of their

equivalences, see Refs. [13–15].

The OLS renormalization procedure is a similarity transformation method for decoupling a given

model space into component subspaces while preserving their eigenvalues. The process involves
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constructing a unitary transform, UOLS , which transforms the original model Hamiltonian of a

given quantum system into two decoupled effective Hamiltonians.

We define the OLS technique for 2N matrix elements in a relative HO basis. The OLS transform

bears its origins in Refs. [13–15], where it was originally proposed as a decoupling scheme for shell

model calculations and plays a significant role in several approaches. In our case, it serves as a way

to construct a unitary transform to decouple the vast majority of our basis states and allows us to

define an effective Hamiltonian that retains a renormalized form of the lowest set of eigenstates,

but in a much smaller basis dimension. Similarly, the transform defined by the Hamiltonian may be

applied to define other effective operators that will retain the system’s observables for that subset

of eigenstates.

We begin by reviewing the original derivation of the OLS effective Hamiltonian as defined in

Ref. [15]. From there we describe the construction of the unitary transform and provide qualitative

insight on how it works. Finally, we offer some perspective on the finer details, challenges, and

limitations of the technique by examining its implementation in the 2N system.

3.3.1.1 The OLS effective Hamiltonian

We briefly introduce the original OLS effective Hamiltonian treatment; see Refs. [15, 15, 15] for

the complete derivation. We consider the solutions ψ ∈ Ψ to the equation

H|ψi〉 = Ei|ψi〉 , (3.10)

which we express in a HO basis Φ = {φ1, φ2, ...}, where φi is the ith HO state. We introduce

the projectors P + Q = I, which divide the given model basis into complementary subspaces

ΦP ⊕ΦQ = Φ of dimensions dP and dQ, respectively, whose constituent states we generically denote

φP and φQ. We want a similarity transform satisfying the decoupling condition

Qe−ωHeωP = 0 , (3.11)
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where the operator ω transforms a Q-space state to a P -space state. For this equation to be

valid, the Q-space components 〈φQ|ψ〉 for a subset, ΨP , of the dP eigenvectors ψ ∈ ΨP must be

representable by the P -space components as

〈φQ|ψ〉 =

dP∑
u

〈φQ|ω|φu〉〈φu|ψ〉 , (3.12)

where the sum is over basis states φu ∈ ΦP . Assuming the chosen eigenvector elements define an

invertible dP × dP matrix, the operator ω may be defined

〈φQ|ω|φP 〉 =

dP∑
i

〈φQ|ψi〉〈ψ̃i|φP 〉 , (3.13)

for ψi ∈ ΨP where ψ̃i denotes the inverse of 〈φP |ψi〉. We may then express the elements of an

effective P -space Hamiltonian, HP ,

〈φP |HP |φ′P 〉 =

dp∑
u,v

dp∑
i,j,k

〈φP |ψ̃k〉〈ψ̃k|φu〉〈φu|ψ̃i〉Ei〈ψ̃i|φv〉〈φv|ψ̃j〉〈ψ̃j |φ′P 〉 , , (3.14)

where the summation indices u and v sum over basis states φ ∈ φP , while indices i, j, k sum over

eigenstates ψ ∈ ΨP .

3.3.1.2 The OLS unitary transform

While the matrix elements expressed in Eq. (3.14) can be used to construct the effective Hamilto-

nian HP (which is non-Hermitian in this form), it is more convenient and illustrative to consider the

construction of the OLS transform. To do so, we return to the consideration of the original Hamil-

tonian H of dimension d, which is taken sufficiently large to achieve numerical convergence of the

dP eigenvalues and eigenvectors intended for defining the P -space. Notably, reaching convergence

is not computationally expensive for 2N and 3N systems using modern technology.
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By finding the eigenvectors ψi of the Hamiltonian, the unitary transform U diagonalizing H

may be constructed as

U =



ψ11 ψ21 . . . ψd1

ψ12 ψ22 . . . ψd2

...
...

. . .
...

ψ1d ψ2d . . . ψdd


, (3.15)

which applied to the Hamiltonian yields

Hdiag = UHU † =



E1 0 . . . 0

0 E2 . . . 0

...
...

. . .
...

0 0 . . . Ed


, (3.16)

where Hdiag is the diagonalized Hamiltonian.

We now re-introduce the projection operators P and Q, as discussed previously. While the

distribution of eigenstates between P & Q may be chosen arbitrarily, we define the P -space as

containing the lower-lying energy spectra with dimension dP and Q-space containing the higher-

lying energy spectra, such that

HP
diag = PHdiagP

† =



E1 0 . . . 0

0 E2 . . . 0

...
...

. . .
...

0 0 . . . Edp


, (3.17)

and

HQ
diag = QHdiagQ

† =



Edp+1 0 . . . 0

0 Edp+2 . . . 0

...
...

. . .
...

0 0 . . . Ed


, (3.18)
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where together the spaces of HP
diag and HQ

diag span the original model space, or

HP
diag ⊕H

Q
diag = Hdiag . (3.19)

We now focus our attention solely on the P -space. In order to express the effective Hamiltonian

of the P -space, the unitary transform U is projected into the P -space as

UP ≡ PUP † =



ψ11 ψ21 . . . ψdp1

ψ12 ψ22 . . . ψdp2

...
...

. . .
...

ψ1dp ψ2dp . . . ψdpdp


. (3.20)

However, this projection leaves UP no longer unitary. While numerous schemes exist to restore

unitarity of this finite matrix (leading to different but unitarily equivalent representations), we

follow the choice of [16, 17], and define the unitary transformation

ŨP =
UP√
UP †UP

. (3.21)

Just as in the case of the OLS effective Hamiltonian, note that this transform requires the

norm in the denominator to be non-zero, which in turn requires no degenerate (or near-degenerate)

eigenvectors in the P -space. Then an effective Hamiltonian in the P -space may then be constructed

as

HP
eff = ŨP †HP

diagŨ
P = ŨP †PUHrelU

†PŨP . (3.22)

The P -space component of the unitary transform UOLS is thus be defined

UPOLS = ŨPPU . (3.23)
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Following the same method, the Q-space component of UOLS could be constructed, allowing the

full unitary OLS transformation to be expressed as

UOLS =

UPOLS 0

0 UQOLS

 , (3.24)

which applied to the original Hamiltonian would yield

UOLSHU
†
OLS =

HP 0

0 HQ

 . (3.25)

In practice however, we are only interested in the lower-lying spectra found in the P -space, meaning

only the construction of UPOLS is necessary (and, consequently, only requires the desired dP eigen-

vectors of the Hamiltonian to be known). By constructing and applying only UPOLS , the subspace

of interest may be decoupled from the full problem while preserving its lowest-lying eigenvalues.

Finally, the transform UPOLS constructed from the Hamiltonian may be similarly applied to other

operators of the original model space to obtain effective P -space operators as

OPeff = UPOLSOU
P †
OLS . (3.26)

The inner products of energy eigenstates with these operators in the original model space will be

similarly preserved by these effective operators for energy eigenstates in the P -space. In the case

that the initial and final P -spaces are different (such as for a transition matrix element) the OLS

transform must be calculated for each subspace independently. The effective transition operator

may then be calculated as

OPeff = UP
′

OLSOU
P †
OLS , (3.27)

where UP ′
OLS is the transform associated with the bra P -space while UPOLS is associated with the ket

P -space.
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3.3.1.3 OLS renormalization in the 2N system

We now employ an implementation of OLS renormalization on the 2N system in relative coor-

dinates. Beyond introducing the concepts, this can be viewed as a supplement to the discussion

provided by the published work provided in Chapter 4.

It is useful to start by considering how the Hamiltonian itself changes with OLS renormalization,

and how it differs from the effects of basis regularization imposed by truncation. Thus, we begin

by considering Fig. (3.4), where the 2N EM500 Hamiltonian’s 1S0 channel is plotted in k2-space for

both conventional Nmax truncation and OLS renormalization. Below each given plot (excluding the

leftmost), the change in energy

∆E0 = E′0 − E0 (3.28)

corresponds to the difference between the original (or “bare”) Nmax = 60 (far left) Hamiltonian’s

lowest 1S0 excitation energy, E0, and the energy E0’ calculated for the same state of the given

truncated/renormalized Hamiltonian.

From just these few examples we can see that the lowest 1S0 excitation energy of the bare Hamil-

tonian remains fairly-well preserved by OLS renormalization, especially compared to the result from

a truncated Hamiltonian of the same matrix dimension, and this serves as a simple consistency check.

Naturally, the precision at which OLS preserves the eigensystem depends directly upon the preci-

sion used in its implementation. For instance, the results displayed here reflect the OLS transform

performed at machine precision in Mathematica (~16 digits); performing the same calculation at

40 digits of precision do not visibly change the plots, but gives ∆E0 < 10−19 MeV for all the listed

choices of dP .

Despite the rather staunch differences in the ground-state energy, the truncated and renormalized

Hamiltonians appear similar at a first glance, and the renormalization appears to retain much of

the Hamiltonian’s original structure. To be more specific, the diagonal bands observed reflect the

kinetic energy operator’s selection rules, and their presence appears to be left largely intact by our

choice of OLS renormalization.
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Figure 3.4 Plots of the realistic EM500 2N Hamiltonian expressed in the ~Ω = 20MeV 1S0

HO basis channel and plotted in k2-space as its basis dimension is reduced by
Nmax truncation (top) and OLS renormalization (bottom), from the original (or
“bare”) Nmax = 60 Hamiltonian on the far left to the Nmax = 18 (or equivalently
dP = 10) Hamiltonian on the far right. Shades of yellow to red denote positive
(i.e. repulsive) magnitudes, while shades of blue denote negative (i.e. attractive)
magnitudes. The color scale is non-linear, and is instead adjusted to maximize
contrast. The energy shift ∆E0 (see Eq. (3.28)) of the lowest 1S0 2N excitation
eigenenergy from the bare Hamiltonian is provided below the corresponding
plot of the Hamiltonian. Notably, the OLS-renormalized Hamiltonians remains
within six or more decimals of the bare Hamiltonian’s lowest excitation energy.
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However, a closer look reveals subtle differences between each vertical pair of panels that explain

the source of the shifts in energy. Specifically, one notices the strong, repulsive diagonal band in the

truncated Hamiltonian Hamiltonian is significantly diminished in the OLS renormalized Hamiltonian

as dP decreases, especially farther down the diagonal. This reflects how the renormalization is

“redistributing” off-diagonal elements inward, especially towards the strong repulsive diagonal, which

will be particularly significant for the energies of higher excitations. Indeed, as the basis dimension

falls, we see the highest momentum regions are being suppressed in general.

If we focus on the difference made by removing only the single most excited basis state through

OLS, we notice that some of the “sharp” block-diagonal structure of the Hamiltonian has been

“smoothed”. In addition, some of the speckle pattern in the low-momentum off-diagonals disap-

pears. The sharp contrast in contours over short spans in momentum space seen in the plot of the

bare Hamiltonian reflects the selection rules of the kinetic energy, which is approximately the sole

contribution beyond the UV range of the potential (which from Fig. (3.5), appears to be roughly

15 fm−2).

We can also see a distinct change in the shape of the interior repulsive region that is dominated

by the potential in dP = 20. To see this more clearly we may consider Fig. (3.5), which shows

the OLS transform applied directly to the potential as UPOLSV2NU
P †
OLS in the upper row, and the

effective potential

Veff = Heff − PTrelP , (3.29)

shown in the lower row.

We see from the top row that, while many structural aspects of the kinetic energy operator

remained unchanged by OLS, the structural changes to the potential appear far more significant.

The range of the central attractive well appears enlarged at dP = 20, and the repulsive barrier has a

hard, square-like cutoff around 8 fm−2. It is particularly noteworthy that this cutoff is not the cutoff

from the reduced basis size, which for the dP = 20 basis used here is around 20 fm−2 according to

Eq. (3.4). This would suggest a new scale emerges for the potential that is being imposed by OLS
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Figure 3.5 Plots of the realistic N3LO EM500 2N potential expressed in the Nmax = 60,
~Ω = 20MeV 1S0 HO basis channel, plotted in k2-space and renormalized with
OLS for multiple choices of P -space dimension dP , from the “bare” dP = 31
potential on the far left to the dP = 10 potential on the far right. Top row shows
the quantity UPOLSV2NU

P †
OLS , whereas the middle shows Eq. (3.29). The Shades

of yellow to red denote positive (i.e. repulsive) magnitudes, while shades of
blue denote negative (i.e. attractive) magnitudes. The color scale is non-linear,
and is instead adjusted to maximize contrast. The corresponding OLS effective
Hamiltonians and energy shifts ∆E0 (see Eq. (3.28)) shown in Fig. (3.4) are
provided in the bottom row for completeness and pedagogical purposes. of the
potential.
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renormalization, which is likely linked to the range in momentum space (the implied P -space range)

over which the phase shifts are preserved.

Meanwhile, the effective potential V P
eff shown on the bottom row suggests the removal of only

the highest HO excitation most significantly impacts the next highest HO excitation. Indeed, only

a slight suppression of the kinetic energy operator can be seen by the traces left behind throughout

the lower momentum regions upon removing the kinetic energy.

Much more can be observed regarding OLS renormalization in the 2N system, and can be found

in Chapter 4. For now, we turn our attention to a second renormalization strategy: the SRG

approach.

3.3.2 The Similarity Renormalization Group

We describe the SRG process for renormalizing 2N matrix elements in a relative basis. The

SRG approach originates from Refs. [18, 19] of the 90s, and reflects many of the same key ideas

regarding scale that have come to define a great deal of modern Nuclear Theory. The SRG process

is centered around using a flow equation to iteratively and unitarily adjust the Hamiltonian using

a given generator of scale transformations. While the method is quite versatile and the effects of

the renormalization can be made to vary significantly based on what generator is used, we will

focus on the common use of the Wilson generator (i.e. the kinetic energy) to boost the convergence

speed with Nmax of the eigenenergies by unitarily transforming the Hamiltonian such that large

momentum changing interaction contributions are suppressed.

We begin by describing the SRG procedure. We then discuss aspects of the procedures compu-

tational implementation and offer some simple examples. We conclude by exploring the impact of

the transform on the Hamiltonian and consider other aspects of the approach.
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3.3.2.1 The SRG procedure

We review the SRG procedure; for a more complete description, see Refs. [20, 21]. For the bare

Hamiltonian H we seek a similarity transform Us with scale parameter s such that

Hs = UsHBU
†
s (3.30)

whereHs is an effective hamiltonian that is band-diagonal with width λ = s−
1
4 (thus, lim

λ→∞
Hs → H).

Taking the derivative of Eq. (3.30) gives the infinitesimal form of the transformation (or “flow

equation”):

dHs

ds
=

dUs
ds

HBU
†
s + UsHB

dU †s
ds

=
dUs
ds

U †sHs +HsUs
dU †s
ds

(3.31)

We note that for unitary operators

d

ds

(
UsU

†
s

)
=

d

ds
(I) = 0→ dUs

ds
U †s = −Us

dU †s
ds

(3.32)

Let’s denote this anti-hermitian quantity ηs = dUs
ds U

†
s . Then our flow equation becomes

dHs

ds
= [Hs, ηs] , (3.33)

where ηs is the generator of infinitesimal changes in scale. Solving the flow equation depicted by

Eq. (3.33) is the primary goal of SRG. The equation is equivalent to a system of ordinary differential

equations (ODEs), which may be solved to determine the limit of Hs when s → ∞. While doing

so, one may similarly transform other operators O alongside the Hamiltonian as

dOs
ds

= [Os, ηs] , (3.34)

where the evolution of ηs is defined by its evolution in Eq. (3.33) (this is why the operators must

be evolved alongside the Hamiltonian).
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For a given implementation, we must choose our generator; what we choose will decide what the

effective Hamiltonian will evolve to. Some common choices are:

• ηs = [Hs, T ] ,→ band diagonal (sometimes called “Wilson generators”)

• ηs =
[
(Hs)diag , (Hs)offd

]
,→block diagonal by channel (sometimes called “Wegner genera-

tors”)

• ηs = [Hs, PHsP +QHsQ] ,→ block diagonal for P & Q (like OLS)

We’ll use the first option for our examples: the kinetic energy operator T . Naturally, in this case,

only the potential of the Hamiltonian will be relevant in iterations of the flow equation, as T

self-commutes.

Finally, it is also often convenient to reparametrize the flow equation with s ≡ 1
λ4
, so that

the flow parameter λ corresponds directly to the imposed cutoff in momentum space, and λ = ∞

corresponds to the original Hamiltonian. Both parameters are commonly used in the literature, and

will be used interchangeably in the upcoming section.

3.3.2.2 Example implementation methods for SRG renormalization

In practice, solving Eq. (3.33) involves evolving the system of ODEs defined by each element of

the matrix. One way to do this is to rephrase the equation purely as an iterative matrix problem,

where one takes infinitesimal steps in the scale ds such that the transform may be approximated

Us ∼ 1 − ηsds. Phrased in terms of an infinitesimal shift in the momentum scale dλ, a single

iteration then just involves calculating

Vλ−dλ = Vλ − [Hλ, ηλ] ds = Vλ + [Hλ, [Vλ, T ]]

(
1

(λ− dλ)4 −
1

λ4

)
. (3.35)

The resulting Vλ−dλ is then put back in place of Vλ and the process is repeated for Vλ−2dλ and so

on.

While a conceptually simple approach, implementing it numerically proves problematic, as it is

very difficult to predict how large the finite step sizes of dλ need to be to avoid building up error and
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voiding the transform’s unitarity. Furthermore, the required step size changes for different values

of λ as well as for different potentials. Thus, this sort of method (as well as any other numerical

time-step approach) becomes a somewhat difficult problem to generalize due to the need to identify

the appropriate step size.

Equivalently, the flow equation may be written as a system of coupled ODEs as

dHs,ij

ds
= [Hs, [Hs, T ]]ij =

∑
l,k

[2HilTikHkj −HilHikTkj − TilHikHkj ] , (3.36)

and the system can be solved analytically. Mathematica proves particularly well-suited to such

a task, so this is the method that is used for the results of the following section. However, this

too ultimately proves fairly limited in the matrix sizes that may be considered in a timely man-

ner, and one generally must rely on state-of-the-art numerical ODE solvers for the high-accuracy

renormalization desired in Nuclear Structure.

3.3.2.3 SRG in the 2N system

We consider an example implementation of SRG in the 2N system. Just as in Subsection 3.3.1,

we find it most demonstrative to examine how the potential itself changes with SRG renormalization

as depicted in Fig. (3.6). To better allow comparison with what we observed in Fig. (3.5), we once

again consider the 2N EM500 potential represented in the 1S0 channel plotted in k2-space, where

once again we include the change in energy defined by Eq. (3.28) below each renormalized plot.

Where OLS evolved the potential to lower momenta in general, SRG presses the potential into

a diagonal band, or, equivalently, restricts the maximum momentum transfer the state’s occupant

can undergo. While this does not strictly reduce the dimension of the basis necessary to include the

entire potential, it does make the inclusion of the higher HO excitations unnecessary for the lower

energy eigenstates of the system, since the eigenstates of the renormalized system are now dominated

by only a small subset of adjacent HO basis states. In practice, this means the wavefunction (and

consequently the renormalized operator observables) will converge much faster.
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Figure 3.6 Plots of the EM500 potential expressed in the ~Ω = 20MeV 1S0 HO basis chan-
nel and plotted in k2-space as it is evolved numerically by SRG (with a Wilson
generator) to the momentum cutoff λ, from the “bare” Nmax = 60 potential (left)
to λ = 1.5 fm3(right). Shades of yellow to red denotes positive (i.e. repulsive)
magnitudes, while shades of blue denote negative (i.e. attractive) magnitudes.
The color scale is non-linear, and is instead adjusted to maximize contrast. The
total shift from the lowest 1S0 2N excitation eigenenergy is provided below the
plot of each renormalized potentials.

3.3.2.4 Further developments for implementing the SRG

Despite the flexibility granted by being able to tailor the generator used for a given system,

performing the SRG method by solving Eqs. (3.33), (3.34) as described in the former examples

proves somewhat restrictive. First, the system of ODEs being solved roughly doubles in size for

each operator one wishes to renormalize. Further, operators often don’t evolve at the same rates and

usually don’t all require the same level of accuracy for different interval values of the flow parameter,

both of which increase the likelihood of the ODEs becoming stiff. Second, the use of a high-order

ODE solver is crucial for high-accuracy implementations of SRG, as any significant accumulation of

error during each time-step destroys the unitarity of the transformation. However, state-of-the-art

solvers often require the storage of a dozen or more copies of the solution vector at any given time,

and this can become memory intensive. This is particularly true for many-body implementations

of SRG like the ab initio MR-IMSRG approach employed in Chapter 5, and proves the primary

computational bottleneck of the method [21]. Finally, the need to renormalize operators alongside

the Hamiltonian, beyond being mildly inconvenient, proves particularly troublesome for transition
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operators when the initial and final systems do not share the same model space (nor, consequently,

the same Hamiltonian matrix).

The most direct solution to these problems would be to simply solve the unitary transform Us,

much like what is done in OLS, as then the transform can be applied to operators independently.

From the description given before, Us may be defined

Us = T e
∫ s
0 ds

′ηs′ = lim
N→∞

N∏
i=0

eηsiδsi =
∑
n

1

n!

∫ s

0
ds1...

∫ s

0
dsnT {ηs1 ...ηsn} (3.37)

where T orders operators by descending scale. However, trying to calculate Us as shown in Eq. (3.37)

is generally highly impractical. Fortunately, methods have been developed to use the Magnus

expansion [22, 23] to recast the problem such that, instead of solving the system of ODEs for the

Hamiltonian and other operators, one expresses the transform Us ≡ eΩs and solves

dΩs

ds
=

∞∑
n=0

Bn
n!

[Ωs, ηs]
(n) , (3.38)

where the nested commutators are given by

[Ωs, ηs]
(0) = ηs , (3.39a)

[Ωs, ηs]
(n) =

[
Ωs, [Ωs, ηs]

(n−1)
]
, (3.39b)

and Bn=0,1,2,··· are the Bernoulli numbers {1,−1/2, 1/6, · · · }. The unitary transform may then be

used to transform any operators of interest using the Baker-Campbell-Hausdorff formula

eΩsOe−Ωs =

∞∑
n=0

1

n!
[Ωs, O](n) . (3.40)

This formulation of SRG possesses a number of convenient advantages over the high-precision

evolution of Eqs. (3.33), (3.34), but also introduces some new problems. For a complete description

see Refs. [24, 22, 23]. This strategy is also a crucial element for the Magnus formulation of IMSRG

calculation used in the MR-IMSRG benchmark calculations of Chapter 5.
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CHAPTER 4. EFFECTIVE OPERATORS IN TWO-NUCLEON SYSTEMS

Modified from a manuscript published in Physical Review C

James P. Vary, Robert Basili, Weijie Du,

Matthew Lockner, Pieter Maris, Soham Pal and Shiplu Sarker

4.1 Abstract

Effective Hamiltonians and effective electroweak operators are calculated with the Okubo-Lee-

Suzuki formalism for two-nucleon systems. Working within a harmonic oscillator basis, first without

and then with a confining harmonic oscillator trap, we demonstrate the effects of renormalization

on observables calculated for truncated basis spaces. We illustrate the renormalization effects for

the root-mean-square point-proton radius, electric quadrupole moment, magnetic dipole moment,

Gamow-Teller transition and neutrinoless double-beta decay operator using nucleon-nucleon inter-

actions from chiral Effective Field Theory. Renormalization effects tend to be larger in the weaker

traps and smaller basis spaces suggesting applications to heavier nuclei with transitions domi-

nated by weakly-bound nucleons would be subject to more significant renormalization effects within

achievable basis spaces.

4.2 Introduction

Precision studies of electroweak properties of nuclei have become of great interest to complement

major advances underway in experimental nuclear physics. As an example, significant experimental

and theoretical efforts are aimed at searches for neutrinoless double-beta (0ν2β) decay which require

significant investments in new experimental facilities and in theoretical advances. Our limited goal

here is to use solvable two-nucleon systems within a configuration-interaction (CI) approach in

order to explore the dependence of electroweak operators on the CI basis-space truncation when
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evaluating nuclear properties. Information on the size of these effects can help interpret previous

studies and guide plans for calculations in larger nuclei.

We select systems of two nucleons interacting via realistic nucleon-nucleon (NN) interactions

both in free space and in a harmonic oscillator (HO) trap for investigating renormalization effects

on a suite of electroweak properties. These systems are numerically solvable in a large HO basis

space providing high precision results for comparison with approximate results. This allows us to

map out the effects arising from the correlations governed by different interactions, as well as the

effects due to basis space truncation and the effects linked with the length scale of the environment,

the trap. To accurately calculate these effects we adopt the Okubo-Lee-Suzuki (OLS) method [1–3]

to derive the basis truncation dependence of effective interactions and operators. By comparing

matrix elements of these derived effective operators with those from a truncated treatment of the

original operators, we observe the truncation effects (conversely the renormalization effects) on each

electroweak operator for each basis space and for each confining HO trap. While most effects tend

to be in the range of a few percent, the effects on the 0ν2β matrix element can be above a factor

of two for some systems. Such cases suggest a careful treatment of renormalization effects must

be implemented for 0ν2β decay matrix elements in limited basis spaces. Fortunately, these same

OLS methods are adaptable to more realistic applications as in the case of the No-Core Shell Model

(NCSM) [4–7] and to valence space effective interactions as well [8].

This work may be viewed in the context of a related pioneering work that extensively investigated

the deuteron and its electromagnetic form factors with renormalization group methods [9]. The

importance of maintaining consistency in the renormalization of both the Hamiltonian and all other

observables is the theme we share. The renormalization method, interactions, observables and

presence of a trap distinguish our work from Ref. [9].
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4.3 Theoretical framework

4.3.1 Many-body systems

We seek to solve a Hamiltonian H eigenvalue problem expressed in a suitable basis and, once

the eigenvectors are obtained, to evaluate matrix elements of additional observables O. For nuclear

physics applications, such as the NCSM, the resulting matrix for H is infinite dimensional. With

truncation, the matrix ofH becomes numerically tractable, allowing the study of results as a function

of the finite basis parameters in order to estimate the converged results and their uncertainties. For

the NCSM, we express H in terms of the relative kinetic energy operator Trel acting between all

pairs of nucleons in the A–nucleon system and an interaction term V that may include multi-nucleon

interactions as

H = Trel + V. (4.1)

By adopting a complete basis of Slater determinants, |Φj〉 for A nucleons, developed from a

chosen single-particle basis, we express the complete space problem as a matrix eigenvalue prob-

lem. That is, the eigenvalues Ek and eigenstates |Ψk〉, expanded in our complete basis of Slater

determinants, obey the equations

H|Ψk〉 = Ek|Ψk〉 (4.2)

|Ψk〉 =
∑
j

Akj |Φj〉, (4.3)

where Akj denotes the expansion coefficient.

The selection of the complete single-particle basis is flexible but we will follow a popular choice

and adopt the three-dimensional HO due to its well-studied analytical properties that facilitate

numerical applications and the retention of the underlying symmetries of H [7]. We take the

neutron and proton mass m to be the same (938.92 MeV, their average measured mass), so that the



www.manaraa.com

84

only length scale in the HO single-particle basis can be expressed in terms of the HO energy ~Ω as

b =

√
~
mΩ

. (4.4)

4.3.2 Finite matrix truncation approach

In practical applications, it is advantageous to define the many-body truncation with Nmax, the

maximum of the total HO quanta in the retained Slater determinants above the minimum total

HO quanta for the A nucleons [7]. A quantum of the HO single-particle state is twice the radial

quantum number n plus the orbital quantum number l. That minimum total HO quanta for the A

nucleons also depends on the number of neutrons N and protons Z that comprise the system. Zero

is the minimum total HO quanta for the two-nucleon systems addressed in this work.

We define the P–space (or “model space”) as the basis space retained by this Nmax truncation.

The infinite-dimensional space beyond this Nmax truncation is called the Q–space. For a sufficiently

large Nmax, some observables are seen to converge in very light nuclei for interactions which do

not couple strongly to high momentum states and when computational resources are sufficient. For

example, using a chiral N2LO NN interaction [10, 11], the ground-state (gs) energy of 6Li has been

calculated [12–14] in a sequence of HO basis spaces. With extrapolation to the complete basis,

the result is −31.0(2) MeV [14]. Here, the parenthesis specifies the uncertainty as 200 keV in the

extrapolation. The basis space truncation for the largest finite basis employed in the extrapolation

is Nmax = 18. At Nmax = 18 and ~Ω = 28 MeV the gs energy, which is also a variational upper

bound of the exact result, is already −29.928 MeV, i.e., about 1.1 MeV above the extrapolated

result. For comparison, the experimental gs energy is −31.995 MeV [15].

However, other observables, such as the root-mean-square (rms) point-proton radius and electric

quadrupole transitions, converge poorly up through Nmax = 18 [16]. For long-range observables such

as the rms point-proton radius, the theoretical results are insufficiently converged to provide directly

a meaningful comparison with experiment. For example, with extrapolations, the rms point-proton

radius for 6Li, has significant uncertainties [16].



www.manaraa.com

85

For all these reasons, it may be advantageous to soften the interactions and to promote improved

convergence of the eigenvalue problem. As we explain in the next section, this softening, or renor-

malization of the interaction, also necessitates renormalizing the operators corresponding to these

other observables. That is, we need to consistently derive the effective operators for all observables

in the chosen model space.

4.3.3 Effective Hamiltonian and operators

Once the complete basis space and the P–space are defined, we can address the development of

an effective Hamiltonian Heff for the P–space that formally retains a subset of the eigenvalues of

the complete space. We adopt the OLS method [1–3] which we briefly outline here. More details,

including specifics for including three-nucleon interactions, are found in Ref. [7].

The formal structure of the OLS approach is visualized by first considering H in the complete

basis space and defining the unitary transformation U that diagonalizes H to produce the Hamil-

tonian’s spectral form Hd along with the P–space projection of U , which we denote WP .

Hd := UHU † (4.5)

WP := PUP. (4.6)

Provided that the projected eigenvectors form a complete set of linearly independent vectors

in the P–space, we can then construct a finite basis transformation ŨP , which is unitary in the

P–space, as

ŨP :=
WP

√
WP †WP

. (4.7)

With this transformation, we define our Heff for the P–space with

Heff := ŨP †HdŨ
P (4.8)

= ŨP †UHU †ŨP . (4.9)
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We denote the OLS transformation UOLS by the combination

UOLS := ŨP †U. (4.10)

We define our P–space to accommodate the lowest set of eigenvalues of the original Hamiltonian

though other choices are feasible, such as retaining states whose eigenvectors have the largest prob-

abilities of P–space configurations. We furthermore note that Heff is not unique since there is the

freedom of a residual P–space unitary transformation that preserves Hd. Additional mathematical

issues have been addressed in Ref. [17] such as the breakdown when linearly-dependent projected

eigenvectors are encountered. We did not encounter this breakdown in the calculations reported

in this work. A central issue for the current work is to investigate the effects of the corresponding

transformation on the observables O needed to generate consistent renormalizations. That is, we

define consistent effective operators

Oeff := UOLSOU
†
OLS (4.11)

for calculations of observables with the P–space eigenfunctions of Heff . 1

While these steps provide the formal framework, the essential question of a practical implemen-

tation requires further discussion. In the NCSM, one introduces an auxiliary confining potential,

which is later removed, and solves for the OLS transformations on a subset of the nucleons in the

nucleus (typically two or three nucleons) in what is dubbed a “cluster approximation” [18, 7]. The

derived few-nucleon effective interaction is designed to renormalize the strong few-nucleon corre-

lations in the presence of other nucleons approximated by the auxiliary potential. This effective

interaction is subsequently employed to define an A-nucleon effective Hamiltonian. The cluster

approximation is guaranteed to produce the exact results as either the cluster size is increased to

reach the full A-nucleon system or as the P–space truncation is removed. The two-nucleon cluster
1Note that we are addressing a P–space which generally includes eigenstates with different conserved quantum

numbers. The UOLS transformation will properly manage scalar operators that conserve the symmetries of H as well
as non-scalar operators that may induce transitions between eigenstates.
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approximation of the NCSM serves as a paradigm for introducing and solving the NN systems of

this work. Our aim is to investigate the ramifications of this approach for effective electroweak

operators derived in a manner consistent with the softened interaction.

To this stage, we have described the formal structure of the OLS method and we have discussed

its applications within the NCSM. For the two-nucleon systems we address below, either without

or with a HO trap, we apply the OLS approach in the relative coordinate system. Since the NN

Hamiltonian is defined with the conserved symmetries of each NN partial wave (channel), we

apply the OLS method to each NN channel independently. That is, we solve for individual OLS

transformations in a relative HO basis of fixed total angular momentum, coupled spin, parity and

charge – the conserved quantum numbers for each NN channel. Then, we calculate the effective

non-scalar operators with OLS transformations from the NN channels required for that operator.

In these applications, the length scale of Eq. (4.4) is defined with the reduced mass which we take

to be 469.46 MeV for all NN channels.

4.4 Applications to two-nucleon systems

4.4.1 Deuteron ground state

We define an initial system to consist of two nucleons described by the H of Eq. (1) whose gs

energy we investigate in this subsection. Motivated by the NCSM cluster approximation framework,

we will define a second two-nucleon system in the next subsection that adds a confining HO inter-

action (trap). Both systems are numerically solvable. We refer to the numerical solutions of these

two systems as their “exact” results and we present these results in the Appendix. Using graphical

representations, we compare these exact results with solutions from a truncation approach and with

solutions from an OLS effective Hamiltonian approach. We refer to the results from the truncation

approach and the results from the OLS approach each as “model” results.

We adoptNN interactions from chiral Effective Field Theory (EFT) and we include the Coulomb

interaction between proton pairs in the Hamiltonian. Specifically, we employ the NN interactions

of the Low Energy Nuclear Physics International Collaboration (LENPIC) [10–14] which have been
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developed for each chiral order up through N4LO. These LENPIC interactions employ a semilocal

coordinate-space regulator and we select the interactions with the regulator range R = 1.0 fm

[13, 14]. We refer to these interactions as “LENPIC–X” where “X” defines the specific chiral order

(LO, NLO, N2LO, N3LO or N4LO). We also employ the chiral EFT interaction of Ref. [19] with

momentum-space regulator 500 MeV which we refer to as “Idaho–N3LO”. All of these chiral EFT

interactions are charge-dependent.

We consider the neutron-proton (np) system since the deuteron gs provides the only bound NN

state. In particular, we solve for the deuteron gs energy for each interaction using three approaches.

First, we obtain a high-precision result by diagonalizing the Hamiltonian in the coupled 3S1 −3 D1

channel in a very large HO basis (Nmax = 400) for three different values of the HO energy ~Ω.

We have verified that these gs energies produce the same result as the numerical solution of the

Schrödinger equation to at least 5 significant figures [10, 11] in all cases. We refer to these results

from diagonalization at Nmax = 400 as the “exact” results. One may view these exact results as

creating a discretized approximation to the continuum and we note that the largest eigenvalues

exceed 1 GeV in all cases investigated here. Second, we solve for the gs energy in the HO bases

truncated at lower Nmax values to produce model results for the simple truncation approach. Third,

we solve for the OLS effective Hamiltonian at each value of Nmax and ~Ω, following the methods

described above, to produce the model results for the OLS approach. We follow this same approach

for the neutron-neutron (nn) and proton-proton (pp) channels needed for some of the transitions

addressed in this work.

The model results of the truncation and OLS approaches are used to calculate their fractional

difference with respect to our exact results for each observable (i.e., observables calculated with the

Nmax = 400 wave functions) where the fractional difference, Fract. Diff., is defined as the scaled

difference (model−exact)/|exact|. The Fract. Diff. results for the deuteron gs energy are presented

as curves in Fig. (4.1) for a representative selection of our NN interactions. We do not show the

results for LENPIC-LO since they are similar to the LENPIC–NLO results. Also, we do not show

the LENPIC–N4LO results which are similar to those of LENPIC–N3LO.
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Figure 4.1 The fractional differences, where Fract. Diff. of an observable
= (model − exact)/|exact|, for the deuteron gs energy at three values of the
HO energy ~Ω as a function of the P–space limit Nmax. The model results
from diagonalizing the P–space truncated Hamiltonian matrix produce Fract.
Diff. curves that decrease towards zero with increasing Nmax in accordance with
the variational principle. The model results from diagonalizing the OLS–renor-
malized Hamiltonian matrix reproduce the exact results at each Nmax to high
precision, yielding flat and overlapping green lines for their Fract. Diff. plots in
all cases. Panels (a), (b) and (c) correspond to the Hamiltonians constructed
with the LENPIC chiral EFT interactions [10–14] at NLO, N2LO and N3LO,
respectively. We employ the LENPIC interactions with coordinate-space regu-
lator R = 1.0 fm. Panel (d) corresponds to the Hamiltonian constructed with
the Idaho–N3LO potential [19] with momentum-space regulator 500 MeV.
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From the results in Fig. (4.1), we observe that the convergence rates for the truncation approach

can depend significantly on the chiral order with the LENPIC NN interaction. In particular,

there is a dramatic slowing of the convergence rates at N3LO as seen in panel (c) compared to

panels (a) and (b). The dependence of the convergence rates on the LENPIC chiral orders is

also revealed in many-body observables where slower convergence leads to larger extrapolation

uncertainties pSec4:Maris:2016wrd,Binder:2015mbz,Binder:2018pgl.

Comparing the LENPIC NN interaction results in Fig. (4.1) also reveals changing shapes of

the convergence patterns with increasing chiral order for the bases using HO energy ~Ω = 5 and 10

MeV. In particular, the case with ~Ω = 5 MeV develops a region showing significantly reduced

slope, nearly a plateau, with increasing Nmax at N3LO (panel (c)). The results for the Idaho–N3LO

interaction shown in panel (d) indicate convergence patterns intermediate to LENPIC–N2LO (panel

(b)) and LENPIC–N3LO (panel (c)). These regions of reduced slope correspond to Fract. Diff ≈ 1.0

which defines a region of P–spaces where the lowest solution is transitioning between an unbound

state and a bound state with increasing Nmax. Thus, for some interactions at lower values of ~Ω,

we observe a plateau-like behavior as seen in panels (c) and (d) of Fig. (4.1). In these same cases,

after crossing over to a bound state solution, the convergence rate accelerates. We have investigated

this plateau and have found a correlation with a changing feature of the wavefunction: while the

solution is moving across the plateau with increasing Nmax it is building up its d–state component

from near zero to near its final value. When it nearly acquires its final value, the energy decreases to

a bound state (Fract. Diff. falls below 1.0) and accelerates its convergence rate. We examined other

interactions exhibiting this plateau in Fract. Diff. and found a similar correlation with buildup of

the d–state probability. We anticipate that, at sufficiently low values of the basis ~Ω, we would find

a similar plateau with all realistic interactions for the deuteron.

The dependence of the convergence rate on the basis ~Ω for the truncation approach in Fig. (4.1)

is systematic – from most rapid convergence at ~Ω = 20 MeV to slowest at ~Ω = 5 MeV. We have

not sought to optimize the choice of ~Ω though that is often a point of interest in many-body
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applications. Our interest here is rather to feature results for a range of choices of ~Ω that will be

useful for our investigation of electroweak observables in the system of the following subsection.

The Fract. Diff. for the results of the OLS approach in Fig. (4.1) always remains at zero, to

within our numerical precision, which is what one anticipates. That is, since the OLS approach

should provide the exact gs energy in any basis space, these results serve as a verification of our

numerical procedures. The OLS procedure reproduces that subset of eigenvalues of the complete

problem compatible with the dimensionality fixed by Nmax, including eigenvalues lying high in the

continuum. We verify the accuracy of the eigenvalues from the OLS approach by direct comparison

with the corresponding subset of results from the complete problem for each set of P–space basis

parameters. We have confirmed that our OLS eigenvalues agree with the respective subset of the

exact eigenvalues to at least 6 significant figures.

We now present additional observables for the deuteron that represent baseline results for later

comparison. In Fig. (4.2) we show the gs energy (panel (a)), rms point-proton radius (panel (b)),

electric quadrupole moment (panel (c)) and magnetic moment (panel (d)) for the same set of 3 HO

basis parameters as in Fig. (4.1) using the LENPIC–N2LO interaction. Here, we expand the scale

to see details of the results from Nmax = 0 – 40. Clearly, the results in the truncated basis exhibit

strong deviations from their exact values and those deviations exhibit non-smooth behavior, such

as sawtooth patterns, with increasing Nmax. The excursions in the electric quadrupole moment

in panel (c) are especially prominent. These features represent the role of an s–state plus d–state

combination that are added with each increase in Nmax by 2 units. With the addition of two such

combinations (increase Nmax by 4 units) we include states with canceling asymptotic tails. This

observation helps one to understand why results differing by 4 units in Nmax follow a simpler trend

in Fig. (4.2) – a trend visualized by the dotted line connecting the successive maxima and another

dotted line connecting the successive minima of the sawtooth patterns. Such a visualization is

also applied to the maxima and the minima of the sawtooth patterns of the other observables in

Fig. (4.2), the rms radius (b) and magnetic moment (c). Note that the scale for the magnetic
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Figure 4.2 The fractional differences for a selection of deuteron properties at three values
of the HO energy basis parameter ~Ω as a function of the P–space limit Nmax.
Following the scheme of Fig. (4.1), we present the Fract. Diff. for the truncated
basis calculations (three colored curves approaching zero at high Nmax) and for
the OLS renormalized calculations (green curves all coincident with zero). All
results are obtained with the LENPIC–N2LO interaction with regulator R = 1.0
fm. The gs energy in panel (a) is an expanded version of the gs energy in panel
(b) of Fig. (4.1). The rms point-proton radius rrms appears in panel (b), the
electric quadrupole moment Q in panel (c) and the magnetic moment µ in
panel (d). The model results using the OLS transformation method reproduce
the exact results at each Nmax to high precision, yielding flat and overlapping
green lines for their Fract. Diff. plots in all cases. The short dashed lines
provide envelopes for results with sawtooth patterns.
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moment is greatly enlarged relative to the other scales in Fig. (4.2) indicating it is rather insensitive

to basis truncation effects.

Here again, the calculations of the effective operators with the OLS method, when employed

with the OLS wave functions in the same P–space, provide the exact results to within 6 digits for

each observable at each value of the trap. The OLS results are seen as the flat green lines at Fract.

Diff. ≈ 0 in Fig. (4.2).

4.4.2 Two nucleons in HO trap – ground-state energy

For the purpose of investigating effective electroweak operators and gauging a range of represen-

tative behaviors anticipating future applications to finite nuclei, we augment the initial system of

the previous subsection with the addition of a confining interaction or trap. We adopt a HO confin-

ing potential and separate the effects of the trap into center-of-mass and relative motion. Since the

center-of-mass motion factorizes, its wavefunction is an exact HO eigenstate and not affected by the

NN interaction acting in relative coordinates. We subsequently consider only the relative motion

of the two nucleons in the confining HO potential of relative motion and employ the Hamiltonian:

H = Trel + V +
1

2
µΩ2r2 (4.12)

For these systems, we adopt HO energies for the confining interaction which match the basis values

of ~Ω = 5, 10, and 20 MeV introduced above.

In this second system, the HO trap simulates the role of the nuclear medium in which the

two-nucleon subsystem is embedded. For applications where we expect weakly bound nucleons

to dominate the electroweak properties, we provide results with the confining strength parameter

~Ω = 5 MeV. Then we progress to simulate contributions from moderately bound to deeply bound

nucleon pairs with ~Ω = 10 and 20 MeV, respectively. We also note that the addition of the HO

trap emulates the mathematical framework for the two-body cluster approximation in the NCSM

where the HO trap is added during the development of the effective Hamiltonian and then removed
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at the stage of defining the effective interaction [7]. Such a treatment of the HO trap as a pseudo-

potential is known to improve convergence in NCSM applications with the OLS approach using the

cluster approximation. We therefore anticipate that studying the two-nucleon system with various

HO traps, including its electroweak properties, will provide insights into renormalization effects on

observables in future NCSM applications to finite nuclei.

For simplicity, we elect to retain only a subset of the LENPIC NN interactions for this second

system. In panel (a) of Fig. (4.3) we show the Fract. Diff. for the gs energy in the 3S1−3D1 channel

for the three different traps. Again, we list the exact results in the Appendix. Note that, for this

second system, the exact results depend on the HO strength parameter ~Ω. The convergence rate

for results of the truncation approach is again systematic – slowest with ~Ω = 5 MeV and fastest

with ~Ω = 20 MeV. However, the scale for Fract. Diff. in panel (a) of Fig. (4.3) is much larger than

in Fig. (4.1). Nevertheless, the results of the OLS approach again provide agreement with the exact

gs energy results over all choices of P–space as evident by the coincident flat green lines at Fract.

Diff. = 0.

4.4.3 Two nucleons in HO trap – electromagnetic observables

We now turn our attention to additional observables in this second system where we again

aim to compare the results of the truncation approach with those of the OLS approach. We note

that a consistent OLS treatment of various long-range observables has been investigated in the

past and results of truncation versus OLS approaches have been shown to be in the range from a

few percent to about ten percent [4–6]. Our aim here is to investigate both electromagnetic and

weak observables over a wide range of basis spaces but in the limited two-nucleon system. In the

end, we find large effects for matrix elements of some observables in cases with traps having small

HO energies and/or in cases having small Nmax values. This suggests that truncation effects are

more severe and renormalization effects are more important when approaching observables involving

weakly bound states and transitions involving resonance states.
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Figure 4.3 Fractional differences between model and exact results as a function of the
P–space for selected gs observables of the two-nucleon system in the 3S1−3 D1

channel for three different HO traps. TheNN interaction is the LENPIC–N2LO
NN interaction with regulator R = 1.0 fm. HO energies ~Ω for the bases
correspond to the HO energies of the traps. The observables correspond to
the eigenenergy (a), the rms point-proton radius (b), the electric quadrupole
moment (c) and the magnetic dipole moment (d).
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For the initial set of gs observables beyond the gs energy, we again examine the rms point-

proton radius rrms, quadrupole moment Q and magnetic dipole moment µ. We note that the role

of the harmonic confining interaction is significant since the wave functions will therefore have

gaussian asymptotic properties which moderate the long-range contributions of these operators. In

true nuclear bound state environments, the asymptotic wave functions are exponential and provide

significant contributions to the long-range observables.

For both the truncation approach and the OLS approach, we again present the results for the gs

expectation value of these operators as a fractional difference from the exact results in Fig. (4.3). The

exact results are, again, those obtained in Nmax = 400 calculations and are given in the Appendix

for completeness. Note the major differences in the scales of Fig. (4.3). The results of truncation

are the largest for the gs energy (see discussion above) and then decreasing in size for rrms, Q and

µ in that order. The results of truncation are also largest at ~Ω = 5 MeV and smallest at ~Ω = 20

MeV. Physically, one expects that, as ~Ω increases, the trap will become more important than the

NN interaction in the Hamiltonian. With this decreasing role of the NN interaction, results from

the truncation approach will trend towards the simpler situation of two nucleons in a simple HO

Hamiltonian where they are increasingly representative of the exact results with the same simple

Hamiltonian. Indeed, the main impression of the results of the truncation approach with a trap

in Fig. (4.3) is the generally smooth trends that contrast the results without a trap presented in

Fig. (4.2) – in particular, the sawtoooth behavior seen in Fig. (4.2) is absent from Fig. (4.3). While

rrms (panel (b)) and µ (panel (d)) appear to have a monotonic convergence pattern, just like the gs

energy, the convergence pattern for Q is slightly more complicated. The Fract. Diff. for Q in the

truncation approach at lower HO trap energies exhibits a sign change while it exhibits a tendency

towards monotonic behavior at larger trap energies.

As shown previously in Fig. (4.2), we find that, as expected, the results for the gs observables in

Fig. (4.3) within the OLS approach agree with the exact gs results over all choices of P–spaces and

traps. This agreement is evident through the Fract. Diff. remaining zero (flat green lines) for the
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OLS results in all panels. We checked that the Fract. Diff. for the OLS results shown in Fig. (4.3)

are zero to at least six significant figures.

4.4.4 Two nucleons in HO trap – weak observables

We now consider the Gamow-Teller (GT) beta decay matrix element for the transition from

the gs of the 1S0 nn channel to the gs of the 3S1 −3 D1 deuteron channel shown in panels (a) and

(b) of for the same traps as above. For panel (a) (and also for panel (c)) we adopt the LENPIC–

NLO NN interaction. For panel (b) (and also for panel (d)) we adopt the LENPIC–N2LO NN

interaction. The GT operator is the simple spin-isospin form [20]. Our aim is to explore the role

of two different, but lower, chiral order interactions with panels (a) and (b) (and also panels (c)

and (d)). Future works will employ GT operators from chiral EFT where the emphasis will shift to

having all observables, including the eigenvalues, obtained with chiral EFT operators at the same

chiral order.

The Fract. Diff. for the GT matrix elements in panels (a) and (b) of Fig. (4.4) displays

convergence patterns in the truncation approach similar to the operators in panels (a), (b) and (d)

of Fig. (4.3) but on a reduced scale and with the opposite sign. The exact result, whose overall sign

is arbitrary and has no physical consequence, is negative with our numerical procedures (see Table

4 in the Appendix). With increasing P–space dimension, the truncation results rise towards the

exact results from below producing the Fract. Diff. trends for the GT matrix elements. Thus, in

smaller basis spaces, the results of the truncation approach for this gs-to-gs transition would require

the application of a scaling, or quenching factor, that is less than unity in order to match the exact

results. In order to help make this point more clear, we present plots of the quenching factor (defined

as the Exact/Model result) in Fig. (4.5) for the results in Fig. (4.4). We note in panels (a) and (b)

of Fig. (4.5) that the quenching factor in truncated calculations of the GT matrix element deviates

from unity by, at most, about 6%. The largest deviations from unity and the slowest convergence

rates are found with the weakest HO trap energy of ~Ω = 5 MeV where the nn and np ground

states are spread in coordinate space compared with their distributions in the other HO traps. This



www.manaraa.com

98

10 20 30 40
Nmax

-0.07

-0.05

-0.03

-0.01

Fract.
Diff.

(a)
GT (VNLO)

10 20 30 40
Nmax

-0.07

-0.05

-0.03

-0.01

Fract.
Diff.

(b)
GT (VN2LO )

10 20 30 40
Nmax

-0.20

-0.15

-0.10

-0.05

0.00

0.05

Fract.
Diff. (c)

0ν2β (VNLO)

10 20 30 40
Nmax

-0.20

-0.15

-0.10

-0.05

0.00

0.05

Fract.
Diff. (d)

0ν2β (VN2LO )

ℏω=5 MeV ℏω=10 MeV ℏω=20 MeV OLS

Figure 4.4 Fractional differences between model and exact results as a function of the
P–space for selected gs transitions from the lowest state of the 1S0 nn system
in three different HO traps. Panels (a) and (b) are for the allowed GT-transition
to the gs of the 3S1−3D1 channel. Panels (c) and (d) are for the 0ν2β-decay to
the gs of the 1S0 pp system. The NN interaction for cases (a) and (c) are taken
to be the LENPIC–NLO potential, while we adopt the LENPIC–N2LO potential
for cases (b) and (d). All results shown employ LENPIC NN interactions with
coordinate space regulator R = 1.0 fm.
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systematic decrease of the GT quenching factor from unity with increasing spatial distribution of the

two-nucleon system is reminiscent of the approximate phenomenological decrease in the quenching

factor for GT matrix elements in valence spaces with increasing atomic number [21]. On the other

hand, as expected, the OLS approach again produces the exact GT results for all our choices of the

HO trap energies and for all choices of P–space (flat green lines at zero (unity) for panels (a) and

(b) of Fig. (4.4) (Fig. (4.5))).

Finally, owing to intense current interest, we investigate the 0ν2β-decay operator within the

same approaches and exhibit the results for three traps in panels (c) (with LENPIC–NLO) and

panel (d) (with LENPIC–N2LO) of Fig. (4.4) and Fig. (4.5). We adopt the 0ν2β-decay operator

from chiral EFT of Ref. [22], which is consistent with chiral N2LO. For calculating our exact results,

we employ a basis space with Nmax = 200 which is sufficient for high-accuracy calculations with

the LENPIC interaction at N2LO. We elect not to apply the LENPIC semilocal coordinate space

regulator to this 0ν2β-decay operator as this regulator is not gauge invariant.

The 0ν2β-decay results in panels (c) and (d) of Fig. (4.4) and Fig. (4.5) reveal that convergence

patterns of the truncation approach are sensitive to the HO energy of the trap. Furthermore,

in contrast with several results seen above, the 0ν2β-decay Fract. Diff. results of Fig. (4.4) do

not appear to approach the exact result with increasing P–space dimension until we reach about

Nmax = (10, 20, 40) for ~Ω = (20, 10, 5) MeV respectively. At Nmax = 0, the magnitude of the

results from the truncation approach are much smaller than the exact results; with increasing Nmax

the results from the truncation approach increase but overshoot the exact results by about 5%

before converging towards the exact results. That is, at small Nmax values, the 0ν2β-decay results

with the truncation approach are significantly suppressed indicating large effects due to evaluating

matrix elements of this operator in truncated basis spaces. For more details of this lower region of

Nmax, we turn to panels (c) and (d) of Fig. (4.5).

The quenching factors in the truncated calculations of 0ν2β-decay in panels (c) and (d) of

Fig. (4.5) rise significantly above unity in the low Nmax region contrary to what we find for the GT

matrix elements. The rise is largest with the weakest trap strength of ~Ω = 5 MeV and smallest
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Figure 4.5 Quenching factor defined as Exact/Model for GT-decay and 0ν2β-decay matrix
elements as a function of the P–space for gs transitions from the lowest state
of the 1S0 nn system in three different HO traps. Panels (a) and (b) are for
the allowed GT-transition to the gs of the 3S1 −3 D1 channel. Panels (c) and
(d) are for the 0ν2β-decay to the gs of the 1S0 pp system. The NN interaction
for cases (a) and (c) are taken to be the LENPIC–NLO potential, while we
adopt the LENPIC–N2LO potential for cases (b) and (d). All results shown
employ LENPIC NN interactions with coordinate space regulator R = 1.0 fm.
A quenching factor greater than unity signals an enhancement of the model
results is required to arrive at the exact results.
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with the strongest trap of ~Ω = 20 MeV. We interpret these results to indicate that significant

contributions from intermediate range components of the 0ν2β-decay operator are omitted with

truncations to the smaller model spaces. Furthermore, these results suggest that truncated cal-

culations of 0ν2β transition matrix elements between weakly bound nucleons are likely to require

quenching factors greater than unity (i.e., enhancements) in small model spaces. In other words,

these substantial excursions above unity may have significant implications for eventual applications

in finite nuclei. It is also worth remarking that the OLS transformation is different for the initial

and final states of both the GT and 0ν2β matrix elements. Therefore, obtaining the exact results

for these matrix elements for all P–spaces by the OLS method is another non-trivial test of our

numerical procedures.

4.5 Summary and outlook

Our initial application to the deuteron ground state revealed the order-of-magnitude effects of

simple P–space basis truncations compared with exact results as a function of the basis HO energy

~Ω for a set of realistic NN interactions. The smallest value studied, ~Ω = 5 MeV, produced the

largest truncation effects (hence the largest renormalization effects) for these interactions. We also

showed that, for a wide range of P–spaces and a selection of NN interactions, the Okubo-Lee-

Suzuki approach consistently reproduced the exact results which one anticipates from a theoretical

perspective.

Effective Hamiltonians and effective electroweak operators were then calculated for two nucleons

in a confining harmonic oscillator trap as a function of the P–space. For this system, matrix elements

of all OLS-derived effective operators again agree with exact results in all model spaces and for all

traps investigated. We quantify the deviations of the simple truncated space results from the

exact results for three different traps as a function of the P–space. We illustrate these effects for

the root-mean-square point-proton radius, electric quadrupole moment, magnetic dipole moment,

Gamow-Teller transition and neutrinoless double-beta decay operators using NN interactions from

chiral Effective Field Theory.
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From the results shown in Figs. (4.3,4.4,4.5), we found that the size of error in the matrix element

of an observable introduced by a truncated basis space approach depends on the observable, the

value of the HO parameter of the trap ~Ω, and the severity of the P–space truncation given by

Nmax. Long-range observables, such as the root-mean-square point-proton radius and the electric

quadrupole moment exhibited larger errors due to truncation to smaller spaces than the magnetic

dipole and GT operators. We also found surprisingly large truncation errors for the double beta

decay operator – larger than that of Q, and of the same order as the rrms radius. On the other

hand, the GT operator exhibited behaviors similar to the magnetic moment as may be expected.

While these results appear to be reasonable in the qualitative sense and are consistent with

previous investigations, the quantitative dependencies shown here may be useful in estimating un-

certainties for observables obtained in truncated many-body calculations with realistic NN inter-

actions. In particular, since renormalization effects tend to be larger in cases with weaker traps

and smaller basis spaces, applications to heavier nuclei, for both transitions between weakly bound

nucleons and to continuum states, will likely be subject to the more significant renormalization

effects.

The results presented here also signal the approximate magnitude of the corrections that the

OLS renormalization provides for each of our selected observables. These corrections, which can

be obtained with OLS renormalization, should be carried forward to the appropriate many-body

applications. It will also be important to implement the chiral Effective Field Theory treatment of

the electroweak operators that are consistent with the chiral Effective Field Theory of the strong

inter-nucleon interactions.
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4.7 Appendix

We present tables of results that correspond to the Nmax = 400 case unless otherwise specified,

where all results have converged to six or more digits of precision as a function of Nmax. All

results involving the LENPIC interactions in the Hamiltonian correspond to adopting the LENPIC

regulator R = 1.0 fm. Results are presented at each value of the HO basis parameter ~Ω and for

each observable. Differences between the “exact” results in the sixth significant figure at different

values of ~Ω in Tables 1 and 2 arise from the transformation of the HO basis representation from

an initial representation at ~Ω = 28 MeV where 5 significant figures in the gs energy was adopted

as the criteria for accuracy in the HO basis transformation. On the other hand, the results shown

here to six significant figures are the results reproduced by the OLS transformation to at least this

level of accuracy.

Table 4.1 Ground-state eigenvalues (in MeV) for the specified potentials used as the “exact”
values in Fig. (4.1).

~Ω (MeV)

Potential 5 10 20
LENPIC–NLO -2.20607 -2.20609 -2.20609
LENPIC–N2LO -2.23508 -2.23516 -2.23516
LENPIC–N3LO -2.22324 -2.22326 -2.22326
Idaho–N3LO -2.22458 -2.22459 -2.22458
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Table 4.2 Ground-state eigenvalues and selected observables used as the “exact” values in
Fig. (4.2). The results were obtained with the LENPIC–N2LO interaction with
regulator R = 1.0 fm. No confining interaction was included.

~Ω (MeV)
gs Observable 5 10 20

H (MeV) -2.23508 -2.23516 -2.23516
rrms (fm) 1.96440 1.96436 1.96436
Q (e fm2) 0.269862 0.269874 0.269873
µ (µN ) 0.856323 0.856323 0.856323

Table 4.3 Ground-state eigenvalues and selected observables used as the “exact” values in
Fig. (4.3). The results were obtained with the LENPIC–N2LO interaction with
regulator R = 1.0 fm. The strength of the confining HO potential is the same
as the basis parameter ~Ω that labels each column of results.

~Ω (MeV)
gs Observable 5 10 20

H (MeV) -0.703487 2.35148 10.7332
rrms (fm) 1.44078 1.20869 0.992923
Q (e fm2) 0.204165 0.164676 0.122359
µ (µN ) 0.852184 0.849597 0.84814

Table 4.4 Ground-state transition matrix elements used as the “exact” values in
Figs. (4.4,4.5). The strength of the confining HO potential is the same as the
basis parameter ~Ω that labels each column of results. The GT transition matrix
element values correspond to the Nmax = 400 case, where they have converged
to six or more significant digits. The 0ν2β transition matrix element values cor-
respond to the Nmax = 200 case, where they have converged to four or more
significant digits.

~Ω (MeV)
Decay LENPIC 5 10 20

GT NLO -1.40355 -1.42839 -1.43974
N2LO -1.40338 -1.42902 -1.44106

0ν2β NLO 1.59067 0.505287 0.827882
N2LO 1.48274 0.476412 0.792684
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5.1 Abstract

We compute nuclear matrix elements of neutrinoless double-beta decay mediated by light Majorana-

neutrino exchange in the A = 6 system. The goal is to benchmark two many-body approaches, the

No-Core Shell Model and the Multi-Reference In-Medium Similarity Renormalization Group. We

use the SRG-evolved chiral N3LO-EM500 potential for the nuclear interaction, and make the ap-

proximation that isospin is conserved. We compare the results of the two approaches as a function

of the cutoff on the many-body basis space. Although differences are seen in the predicted nuclear

radii, the ground-state energies and neutrinoless double-beta decay matrix elements produced by

the two approaches show significant agreement. We discuss the implications for calculations in

heavier nuclei.

5.2 Introduction

Since the discovery of the lepton flavor violation in neutrino oscillations [1–3], identifying whether

the neutrino is a Majorana fermion (i.e. its own antiparticle) has become a priority in nuclear



www.manaraa.com

108

and particle physics. However, because neutrinos are charge neutral and nearly massless, they

are notoriously difficult to detect, and their properties remain only partly understood. Major

theoretical and experimental collaborative efforts are already underway to study neutrino properties

[4–19]. Answering whether neutrinos are indeed Majorana particles would not only shed light on

the mechanism behind neutrino mass generation, but would also provide insight on leptogenesis and

the universe’s apparent matter-antimatter asymmetry.

Neutrinoless double-beta decay (0νββ-decay) is a hypothetical lepton-number-violating (LNV)

nuclear transition where two neutrons decay to two protons and two electrons but no anti-neutrinos

(or the reverse with leptons exchanged with their antiparticles). Observing 0νββ-decay would

confirm the existence of a LNV process, and is commonly viewed as the best means of learning

whether neutrinos are Majorana particles. Experiments designed to detect 0νββ-decay in ton-scale

volumes of 76Ge, 136Xe, and other materials have already put impressive limits on the 0νββ-decay

half-life [6, 7, 9], and these limits will only become more accurate as additional data is collected.

For a more complete description of current and past efforts as well as some of the underlying theory,

see Refs. [20–24] and references therein.

While of enormous significance in itself, the experimental detection or non-detection of 0νββ-

decay will be insufficient to pin down or put limits on extra-Standard-Model parameters such as

the average neutrino mass. Because the decay rate depends on the 0νββ-decay nuclear matrix

elements (NMEs), interpreting the experimental results requires the accurate calculation of those

NMEs. However, at present the calculated NMEs in the heavy nuclei of interest differ by a factor of

two to three [22]. In addition, calculated NMEs for β-decay are usually smaller than experimental

values, and the reasons for these differences are only now being understood in a quantitative way

[25]. To shed light on these differences, it is helpful to examine weak processes in light nuclei, where

calculations are better controlled than in the heavy nuclei we must eventually grapple with. Thus,

while not experimentally viable for 0νββ-decay, light nuclei are a practical option for benchmarking.

The purpose of this study is to calculate the NMEs (for 0νββ-decays mediated by light Majorana-

neutrino exchange) in the A = 6 system. Benchmarking different many-body methods and identify-
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ing important features that affect the NMEs in these light nuclei will both test the approaches that

we will apply in heavy nuclei and help us anticipate issues that may arise there. Assessing the con-

vergence behavior of the decay NMEs with increasing model-space size is of particular importance,

as it will help quantify uncertainties in heavier nuclei where more severe basis truncation is compu-

tationally required. Thus, we consider the ground-state-to-ground-state 0νββ-decay of 6He→ 6Be,

which, while kinematically disallowed, involves the same decay operator that determines the allowed

decay rates in heavy nuclei.

We employ two ab initio many-body approaches: the No-Core Shell Model (NCSM) and the

Multi-Reference In-Medium Similarity Renormalization Group (MR-IMSRG). The NCSM is a large-

scale diagonalization method that yields exact results in the limit of an infinitely large configuration

space. On the other hand, the MR-IMSRG (a variation of the IMSRG in which the method’s

reference state contains explicitly built-in correlations) yields approximate solutions to the many-

body Schrödinger equation within a systematically improvable truncation scheme. That is, where

the NCSM includes all many-body correlations up to the given basis cutoff by construction, the

MR-IMSRG only includes many-body correlations up to a cutoff in the many-body expansion. In

exchange, the computational effort of the MR-IMSRG scales much more favorably with particle

number and configuration space size, which makes it capable of modeling both light and heavy

nuclei. While both methods treat all nucleons as active, they can also be used to generate effective

interactions and operators for traditional Shell-model calculations in heavier nuclei [26–32].

For both the MR-IMSRG and NCSM calculations performed in this work, we assume good

isospin symmetry to facilitate the comparison of their results, though it should be noted that we

could drop this assumption at the cost of introducing more complex methods [33, 34]. For both

approaches we adopt the next-to-next-to-next-to-leading chiral order (N3LO) Entem-Machleidt two-

body potential with regulator cutoff Λ = 500 MeV (referred to as ’N3LO-EM500’) [35, 36], to model

the nucleon-nucleon (NN) interaction. The potential is expressed in the harmonic oscillator (HO)

basis with energy scale ~Ω = 20 MeV, and softened by SRG evolution to the scale of λ = 2.0 fm−1

(with the relative kinetic energy, Trel, as the generator [37]) prior to many-body calculations.
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Figure 5.1 Feynman diagram (modified from Ref. [22]) for 0νββ-decay mediated by
light-neutrino exchange. Two neutrons (n) decay into two protons (p), emitting
two electrons (e−). No neutrinos are emitted, implying that they are Majorana
particles (νM).

Our examination of the A = 6 system with the NCSM is similar to the studies in Refs. [38,

39], but differs from both in: the NN-interaction used, the extrapolations employed, our focus on

0νββ-decay, and our comparison with the MR-IMSRG approach. Our study also offers a point of

comparison to the computation of 0νββ-decay NMEs arising from an array of LNV mechanisms in

light nuclei by using ab initio Variational Monte-Carlo (VMC) techniques [40], though our study is

distinguished by our use of a different NN-interaction and our focus solely on 0νββ-decay mediated

by light Majorana-neutrino exchange.

The rest of this paper is structured as follows: Section 5.3 briefly outlines the derivation of the

0νββ-decay operator as defined in Refs. [22, 41, 42]. We provide a brief review of the NCSM in 5.4.1,

and the MR-IMSRG in 5.4.2. Section 5.5 compares the ground-state energy and square radius (in

5.5.1), and analyzes the contributions to the total 0νββ-decay NME (in 5.5.2). Finally, Section 5.6

reviews our findings and concludes the discussion. Additional details regarding our extrapolation

methods and tables of calculated values are provided in Appendix 5.8.
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5.3 0νββ with light majorana-neutrinos

We consider 0νββ-decay caused by the exchange of the three light Majorana neutrinos and

the Standard-Model weak interaction as depicted in Fig. (5.1); all contributions from other LNV

processes are neglected.

Drawing on Refs. [22, 41] and the approximations employed there, we write the 0νββ-decay rate

as [
T 0ν

1/2

]−1
= G0ν (Q,Z) |M0ν |2

∣∣∣∣∣∑
k

mkU
2
ek

∣∣∣∣∣
2

, (5.1)

where Q is the difference between initial (i) and final (f) state energies, (i.e. Q ≡ Ei−Ef ), Z is the

proton number of the final nucleus, mk is the Majorana mass eigenvalue, and Uek is an element of

the neutrino mixing matrix that connects neutrino flavor with mass eigenstate k. G0ν (Q,Z) comes

from the phase-space integral which has been evaluated with improved precision in Refs. [43, 44].

In this study, we focus on the 6He→ 6Be ground-state-to-ground-state NME, M0ν [42, 45, 46],

obtained from the 0νββ-decay many-body operator, O0ν , as

M0ν = 〈6Be|O0ν |6He〉. (5.2)

Our notation follows that of Ref. [47] unless specified otherwise.

5.3.1 The 0νββ-decay matrix elements

The many-body operator O0ν is conventionally divided into three contributions, labeled Fermi,

Gamow-Teller (GT), and tensor. We use the symbol O to generically denote any one of these

contribution’s corresponding two-body operator, which may always be written in second-quantized

form as

O =
1

4

∑
αβγδ

〈αβ|O|γδ〉a†αa
†
βaδaγ (5.3)
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where a† and a create and annihilate nucleons, respectively, in single-particle states. A given

single-particle state α is defined by the quantum numbers nα, lα, sα, jα, tα, mjα, and mtα, which

correspond to the radial, angular momentum, spin, total angular momentum, isospin, angular mo-

mentum projection, and isospin projection, respectively. Greek indices α, β, γ, δ are used to denote

single-particle states, while the corresponding Roman indices a, b, c, d refer to the reduced set of

quantum numbers, such that a†α ≡ a†a,mjα,mtα . We define spherical tensor/isotensor versions of the

annihilation operators as

âδ ≡ (−1)jδ+mjδ+
1
2

+mtδ ad,−mjδ,−mtδ , (5.4)

such that

aδaγ = (−1)
jγ+jδ+mjγ+mjδ+1

âc,−mjγ ,−mtγ âd,−mjδ,−mtδ . (5.5)

For the ground-state-to-ground-state transition of 6He →6 Be, we may narrow our scope to

components of the two-body operators that contribute to 0+ → 0+ NMEs. Expanding Eq. (5.3)

into doubly-reduced tensorial components in the JT -coupled two-body isospin representation yields

for this transition

O0,2
0,−2 = − 1

4
√

3

∑
abcd

∑
J

(Nab (J, 1)Ncd (J, 1))−1

· (ab; J 1|||O0,2|||cd; J 1)

·
[[
a†aa
†
b

]J,1
[âcâd]

J,1

]0,2

0,−2

, (5.6)

where brackets denote tensor products with tensor, isotensor couplings in superscripts and their cor-

responding projections in subscripts, Nij(J, T ) ≡
√

1− δij(−1)J+T /(1 + δij) is an antisymmetriza-

tion factor, and the triple lines ’|||’ denote doubly-reduced two-body matrix elements (TBMEs).

In Eq. (5.6) we implicitly include only two-body states that satisfy the Pauli exclusion principle

in the sum over nucleon states (or, effectively, we only consider values of i, j, J , and T such that

Nij(J, T ) 6= 0).
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We express the total NME (M0ν) as the sum of the Fermi (MF
0ν), GT (MGT

0ν ), and tensor (MT
0ν)

contributions

M0ν = MF
0ν +MGT

0ν +MT
0ν . (5.7)

These three NME contributions are developed for the many-body initial and final nuclear states

from the doubly-reduced TBMEs of the three corresponding two-body operators. We evaluate the

NMEs by summing over the two-body contribution from each unique pair of the system’s nucleons.

We calculate the TBMEs with the two-body operators

OF0ν (r) =
4R

πg2A

∫ ∞
0

|q|d|q| j0(|q|r)hF (|q|)
|q|+ Ē − (Ei + Ef )/2

τ+1 τ
+
2 ,

OGT0ν (r) =
4R

πg2A

∫ ∞
0

|q|d|q|j0(|q|r)hGT (|q|)σ1 · σ2

|q|+ Ē − (Ei + Ef )/2
τ+1 τ

+
2 ,

OT0ν (r) =
4R

πg2A

∫ ∞
0

|q|d|q| j2(|q|r)hT (|q|)S12

|q|+ Ē − (Ei + Ef )/2
τ+1 τ

+
2 , (5.8)

where q is the momentum transfer, r = |r1 − r2| is the magnitude of the inter-nucleon position

vector, and r̂ is the corresponding unit vector. Additionally, r1\2, σ1\2, and τ+
1\2 respectively denote

the labeled nucleon’s position operator, spin operator, and isospin raising operator (transforming

neutrons to protons), while S12 = 3σ1 · r̂σ2 · r̂−σ1 ·σ2 is the tensor operator. The NMEs contain

r-dependence through the spherical Bessel functions j0 and j2 in Eq. (5.8), and, for several heavy

parent nuclei, have been shown to vanish at small distances r, fall off like 1/r at large distance, and

have a typical range of a few femtometers (fm) [48]. Hence, we expect good convergence with the

basis space for these operators in our calculations.

The neutrino potentials, h, are defined in momentum space as

hF (|q|) ≡ −g2V (q2) ,

hGT (|q|) ≡ g2A(q2)− gA(q2)gP (q2)q2

3mN
+
g2P (q2)q4

12m2
N

+
g2M (q2)q2

6m2
N

,

hT (|q|) ≡ gA(q2)gP (q2)q2

3mN
− g2P (q2)q4

12m2
N

+
g2M (q2)q2

12m2
N

, (5.9)

where gM
(
q2
)

= (1 + κ1) gV
(
q2
)
' 4.706gV

(
q2
)
(with the anomalous nucleon isovector magnetic

moment κ1 = 3.706), and the Goldberger–Treiman relation gP
(
q2
)

= 2mNgA
(
q2
)
/
(
q2 +m2

π

)
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(with nucleon mass mN and pion mass mπ) connects the pseudoscalar and axial terms [49, 22].

The conservation of the vector current implies that gV ≡ gV
(
q2
)∣∣

0
= 1, while the value gA ≡

gA
(
q2
)∣∣

0
' 1.27 may be extracted from neutron β-decay measurements. Their momentum transfer

dependence is gV
(
q2
)

= gV
(
1 + q2/Λ2

V

)−2 and gA
(
q2
)

= gA
(
1 + q2/Λ2

A

)−2 where ΛV = 850 MeV

and ΛA = 1040 MeV are the vector and axial masses, respectively. The nuclear radius R = 1.2A
1
3 ≈

2.2 fm is inserted by convention to make the matrix elements dimensionless, with a compensating

factor absorbed into G0ν in Eq. (5.1). Finally, Ē is an estimate of the average intermediate-state

energy, the choice of which has been shown to have only a mild influence on the decay amplitude

[41]. We employ the value Ē − (Ei + Ef )/2 ≡ 5MeV throughout this work.

In other prescriptions, the operators defined by Eq. (5.8) are sometimes multiplied by an addi-

tional radial function, f(r), designed to take into account short-range correlations that are omitted

by Hilbert-space truncations performed in the many-body calculations [50–54]. In this work, we

assume all relevant nucleon-nucleon correlations are embedded in the many-body wavefunctions

generated in our NCSM and MR-IMSRG model spaces and employ no additional radial function.

We numerically integrate the inner products of the operators in Eq. (5.8) using relative HO states

to obtain reduced matrix elements in the relative basis. These elements are then converted to

M-scheme TBMEs via a Moshinsky transformation [55, 56] before being employed in many-body

calculations.

5.3.2 0νββ-decay in 6He with isospin symmetry

When considering isovector operators, a common challenge shared by many ab initio nuclear

approaches (particularly those relying on finite matrix methods) arises when the initial and final

nuclei are not the same, as the many-body spaces for the two will generally differ. In NCSM calcu-

lations, this problem usually requires the many-body eigenstate wavefunctions of the two systems

to be calculated independently. In the MR-IMSRG, two different unitary transformation operators

must be constructed, one for the initial nucleus and one for the final nucleus.
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While solutions for overcoming this challenge have been developed for the NCSM and have been

implemented for the MR-IMSRG [34], a careful choice of transition can circumvent the issue when

isospin conservation is a good approximation. Thus, we assume that isospin symmetry is obeyed in

the mirror nuclei 6He and 6Be.

The ground states of 6Be and 6He are characterized by total angular momentum J = 0 and

isospin T = 1, with projections Tz = −1,+1, respectively. If isospin symmetry is obeyed, the

two-body density of Eq. (5.6) may be rewritten in terms of the 6He two-body density alone as

〈6Be|
[[
a†aa
†
b

]J,1
[âcâd]

J,1

]0,2

0,−2

|6He〉

=
√

6〈6He|
[[
a†aa
†
b

]J,1
[âcâd]

J,1

]0,2

0,0

|6He〉. (5.10)

5.4 Benchmarked methods

Both the NCSM and MR-IMSRG can provide accurate results when applied in light nuclei. The

MR-IMSRG has the advantage that, with suitable approximations, it can be applied in heavier

systems [26, 29, 30]. For the NCSM one may envision applications in heavier systems by merging it

with renormalization approaches or by introducing an inert core and deriving effective interactions

for valence-space Shell model calculations (see e.g., Refs. [27, 31, 28, 32]). The approximations

involved in these envisioned approaches to heavier nuclei will also require benchmarking.

Both methods consider the A-body nuclear Hamiltonian, H, consisting of a relative kinetic-

energy term and interaction terms, i.e.

H =
1

2AmN

A∑
i<j

(pi − pj)2 + VNN + VNNN + ... (5.11)

where mN is the average nucleon mass, VNN is the NN-interaction, and pi denotes the momentum

of nucleon i. We follow the convention for two-body operators where summations over nucleon pairs

are performed under the ordering given by i < j to avoid counting the same pair twice. The term

VNNN denotes three-body interactions, also called 3-nucleon forces (3NFs), which may be followed
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by higher-body interactions. Although studies have demonstrated that 3NFs can have a significant

impact on calculated nuclear observables [56], their inclusion would greatly increase computational

cost and is thus deferred to future efforts. We therefore consider here only the NN-interactions from

N3LO-EM500 [35, 36], which is charge-dependent.

5.4.1 No-Core Shell Model

The NCSM [56] is a configuration-interaction (CI) approach in which the many-body basis

states, |Φ〉, are expressed as Slater determinants of single-particle states occupied by the system’s

nucleons, or

|Φ〉 = A

[∏
i

|φαi〉

]
, (5.12)

where |φαi〉 denotes a single-particle state with quantum numbers αi occupied by nucleon i, and

A is an antisymmetrization operator that carries both the sign permutations of the determinant as

well as an overall normalization factor. Our NCSM approach features separate Slater determinants

for the neutrons and protons, and the resulting many-body basis is specific to the nucleus under

consideration. For a given application, we form total Slater determinants of fixed parity and fixed

total angular momentum projection MJ .

The infinite HO basis (with energy scale fixed by the usual parameter ~Ω) is the conventional

choice of single-particle basis and is used in this work. Additional details on the HO basis functions

may be found in Ref. [56].

The nuclear many-body wavefunctions, Ψ (r1, ..., rA), satisfy the A-body Schrödinger equation

and are obtained by solving the Hamiltonian matrix eigenvalue problem

H|Ψ〉 = E|Ψ〉 (5.13)

where E is the eigenenergy of nuclear state |Ψ〉. Beginning with the kinetic-energy and interaction

TBMEs in the HO basis, one constructs the A-body Hamiltonian matrix elements in the many-body

basis as 〈Φµ|HA|Φν〉, where the indices µ and ν label the many-body basis states. The many-body
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eigenstates are then linear combinations of many-body basis states:

|Ψ〉 =

∞∑
µ

cµ|Φµ〉 (5.14)

where cµ are the normalized coefficients of the many-body basis states |Φµ〉. For practical calcula-

tions, the infinite many-body basis requires truncation, which one controls by using a basis cutoff

parameter. For NCSM calculations performed in this study, we employ the cutoff parameter Nmax,

which denotes the maximum number of HO excitation quanta allowed in the many-body basis above

the minimum number required by the Pauli principle [56].

Solving Eq. (5.13) with the resulting finite many-body Hamiltonian then becomes a large

(but generally sparse) matrix eigenvalue problem. We calculate the solution with the hybrid

OpenMP/MPI CI code Many Fermion Dynamics for nucleons (MFDn). The code is optimized

for solving the large sparse matrix eigenvalue problem by using a Lanczos-like algorithm to deter-

mine the desired lowest-lying energy eigenvalues and corresponding eigenvectors. The eigenvectors

are then used with other operator matrix elements to calculate that operator’s expectation values

during post-processing. For more details on MFDn, see Refs. [57–59].

By solving the system in a sequence of increasingly large bases, one can extrapolate to the

result when using the complete basis (i.e. where the matrix dimension of H goes to infinity and

the calculation becomes exact). Any other observable can also, in principle, be extrapolated to this

limit, and such extrapolations are a distinguishing feature of No-Core Full-Configuration (NCFC)

studies [60].

5.4.2 Multi-Reference In-Medium Similarity Renormalization Group

Here we provide a brief overview of the MR-IMSRG; a more complete description may be found

in Refs. [61–63]. For an initial Hamiltonian H, the flow equation

dH(s)

ds
= [η(s), H(s)] , (5.15)
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reflects a unitary transformation of the Hamiltonian. Here η is called the generator of scale trans-

formations and s is the flow parameter, defined such that H(s) |s=0 is just H. The ground-state

energy is simply given by the expectation value of the evolved Hamiltonian H(s) in the reference

state. Instead of solving the set of differential equations for H(s) in Eq. (5.7), one can solve a

similar flow equation for the unitary transformation operator U(s),

dU (s)

ds
= η (s)U (s) , (5.16)

whose solution can formally be written in terms of the S-ordered exponential

U (s) = S exp
∫ s

0
ds′η

(
s′
)
, (5.17)

which is short-hand for the Dyson series expansion of U(s). As shown first by Magnus, it is possible

to rewrite the unitary transformation operator as U(s) ≡ eΩ(s), a step that transforms the equation

for U(s) into one for Ω [64]:

dΩ (s)

ds
=
∞∑
n=0

Bn
n!

[Ω (s) , η (s)](n) . (5.18)

The nested commutators in this equation are given by

[Ω (s) , η (s)](0) = η (s) , (5.19a)

[Ω (s) , η (s)](n) =
[
Ω (s) , [Ω (s) , η (s)](n−1)

]
, (5.19b)

and Bn=0,1,2,··· are the Bernoulli numbers {1,−1/2, 1/6, · · · }.

The expectation value of any operator O is then given by 〈Φ|O (s) |Φ〉 = 〈Φ|eΩ(s)O−Ω(s)|Φ〉, and

can be evaluated with the Baker-Campbell-Hausdorff formula:

eΩ(s)Oe−Ω(s) =
∞∑
n=0

1

n!
[Ω (s) , O](n) . (5.20)
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In the MR-IMSRG calculations performed here, we express all operators in normal-ordered form

with respect to a reference state |Φ〉 in order to control the proliferation of induced terms. We keep

up to normal-ordered two-body operators throughout the calculation, in accordance with the MR-

IMSRG(2) truncation described in Ref. [63]. We use particle-number-projected HFB quasiparticle

vacua as reference states, and adopt the Brillouin generator [62]. We numerically solve the flow

equation for values of s large enough so that the solutions are very close to their asymptotic limits.

The underlying Hamiltonian that defines both the projected HFB reference state and the starting

point for the flow equation is determined by using the same TBMEs in the single-particle HO basis

that are used in our NCSM calculations. However, unlike the NCSM, the MR-IMSRG is formulated

in the natural orbital basis of the reference state. Since the reference state results from a projected

HFB calculation in a HO basis, the MR-IMSRG effectively explores a configuration space controlled

by the cutoff parameter emax, which denotes the maximum number of energy quanta that the HO

components of any natural orbital can have. In effect, for a given cutoff emax, the MR-IMSRG

many-body basis will include single-particle excitations up to emax (i.e. one-particle-one-hole, or

1p1h), two-particle excitations (i.e. 1p1h+1p1h or 2p2h) up to 2emax, uncorrelated three-body

excitations (i.e. 1p1h + 1p1h + 1p1h or 1p1h + 2p2h) up to 3emax, and so on.

5.5 Results and discussion

Here we discuss the results of the NCSM and MR-IMSRG calculations. We provide graphical

representations of the results, as functions of the basis cutoff parameters, to analyze the convergence

of the operators at the chosen basis scale of ~Ω = 20 MeV. Throughout, we use solid dots to

represent NCSM results and open boxes to represent MR-IMSRG results. Similarly, we use solid

lines to denote extrapolations of the NCSM results and dashed lines to denote extrapolations of the

MR-IMSRG results.

In order to compare the convergence behavior of results from the NCSM and MR-IMSRG, the

differences in their truncation schemes must be considered. We recall that the NCSM’s cutoff param-

eter Nmax denotes the total number of allowed excitation quanta in the system, and emax denotes
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the maximum number of allowed energy quanta possessed by any single nucleon. Since in 6He at

a given Nmax the highest number of quanta possessed by any single-particle state will be Nmax + 1,

we equate the two cutoffs with the assignment emax ≡ Nmax + 1 for our comparison. While this

assignment is not exact, it ensures that for a given pair of matched cutoffs, identical single-particle

bases (and by consolation TBMEs) are used by both truncation schemes. Moreover, our use of this

assignment to compare the results does not preclude their examination from other perspectives.

Instead, we merely offer this assignment as a reasonable means to present our comparison of the

results and their convergence.

We extrapolate our results to obtain predictions of observables at the continuum limit and to

better examine their convergence behavior; the functional forms and other details regarding these

extrapolations are provided in Appendix 5.8. We extrapolate our results for energy and square radii

with formulae (Eq. (5.22) and Eq. (5.23), respectively) inspired by those provided in Refs. [65, 60].

Meanwhile, as is the case for many nonscalar operator observables (with the exception of significant

investigations on extrapolating E2 observables [66]), precision extrapolation approaches for 0νββ-

decay observables remain largely unexplored. Guided by the similarities of the observable’s r-

dependence seen in Ref. [48] to that of nuclear interactions, we employ the same simple exponential

form applied for the energy to extrapolate the 0νββ-decay contributions. While we acknowledge a

thorough investigation of extrapolating 0νββ-decay NMEs is warranted for refined predictions and

accurate uncertainty estimates, we find this form provides an adequate fit and proves sufficient for

this comparative study.

To facilitate our discussion of convergence, we refer to the speed (with respect to the cut-

off parameters) at which an operator eigenvalue approaches its asymptotic value as the result’s

“convergence rate”. We gauge the convergence rate with the value of Nmax (emax) at which the

extrapolation is within 5% of its value at the continuum limit, denoting this generally non-integer

value Ñ5% (ẽ5%). While this metric relies heavily on the validity of the extrapolation, it provides a

functional estimate for both the relative convergence speeds between results and approximate cut-

offs required for reaching well-converged values. In addition, there is good reason from a theoretical
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Figure 5.2 Ground-State energy (a) and neutron (light blue), proton (light red), and mat-
ter (gray) square radii (r2

n, r2
p, and r2

m respectively) (b) of 6He with varying basis
cutoff parameter from NCSM (solid circle) and MR-IMSRG(2) (open square) ab
initio calculations. Solid and dashed lines denote the NCSM and MR-IMSRG
extrapolations, respectively. The realistic N3LO-EM500 potential with energy
scale ~Ω = 20 MeV and SRG evolution scale λ = 2.0 fm−1 is used in all cases.
The asymptotic fit parameter, 〈r2〉∞, of the NCSM square radius extrapola-
tions are listed in the legend of (b) (see Eq. (5.23) for extrapolation definition).
Fit parameters and plotted values are listed in Table (5.1) for energy, and in
Table (5.2) for the square radii.

perspective to expect the same extrapolation forms effective for the NCSM will be effective for the

results of IMSRG calculation [61].

Finally, in the interest of understanding what the differences between the extrapolated results

of the two ab initio calculations signify, we briefly consider the general A-body system. For such

a system, the untruncated MR-IMSRG calculation would include all many-body correlations, and

would therefore provide identical results (within numerical noise) as the NCSM at the continuum

limit. By performing only the MR-IMSRG(2) calculation, we expect the two approaches’ results

to converge to different values based on how significant the neglected three-body (up to A-body)

correlations are to the observable in question. Thus, beyond the mild uncertainty introduced by the

extrapolation, differences between the extrapolated results estimate the significance of many-body

correlations neglected by the MR-IMSRG(2) calculation.
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5.5.1 Ground-state energy and nuclear square radius

The initial system is the 6He nucleus in its ground state. The calculated ground-state energy and

neutron, proton, and matter square radii (r2
n, r2

p, and r2
m respectively) varying with basis truncation

are shown in panels (a) and (b) of Fig. (5.2) respectively.

The NCSM ground-state energy extrapolation has converged to within 5% of its asymptotic

value of -28.35 MeV by Ñ5% ∼ 8.1. The MR-IMSRG(2) extrapolated energy converges somewhat

faster by comparison, with ẽ5% ∼ 4.9 and the asymptotic value of -28.47 MeV. We observe that

the MR-IMSRG(2) results and extrapolation at a given Nmax consistently match the NCSM results

and extrapolation at roughly 2Nmax, from Nmax ∼ 2 onward. Considering how the emax basis

will include two-body excitations up to 2emax and the MR-IMSRG(2) truncation employed, this

supports the observation that the energies of this system can be reproduced well with only up

to 2p2h excitations. Both extrapolated ground-state energies are about 1 MeV greater than the

experimental result of -29.27 MeV [67]. They are also about 1.7 MeV greater than the extrapolated

results of -30.0(1) MeV and -29.87 MeV from two similar (but independent) NCFC calculations of

the 6He ground-state [68, 65] that used only the charge-independent parts of our strong-interaction

Hamiltonian.

Unlike the ground-state energy, the MR-IMSRG(2) (NCSM) square radii converge much faster

(slower), with ẽ5% ∼ 14, 3.5, 12 (Ñ5% ∼ 71, 30, 63) for neutron, proton, and matter square radii,

respectively. This difference in convergence speed is primarily a result of the use of natural orbitals

in the MR-IMSRG. Notably however, we observe the MR-IMSRG(2) results converge to a roughly

34%, 21%, and 32% smaller value than the NCSM results for the corresponding square radii. All radii

share the slower convergence rate relative to the ground-state energy that is commonly associated

with the r2 operator; a consequence of coming from an effective operator with significant correlations

outside the characteristic length scale of the chosen HO basis [56, 38, 69–71]. In the NCSM (and

to a lesser degree MR-IMSRG), the slow convergence reflects the regularization of the infrared (IR)

momentum region from the HO basis truncation. In effect, because the basis’s length scale is chosen

to favor convergence in energy, the basis requires higher cutoffs to fully capture the longer-range
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correlations of the r2 operator. The significantly faster convergence speed of the proton square

radius (compared to those of the neutron and matter square radii) is a consequence of this effect,

as the protons predominantly remain in the core of the 6He ground-state halo structure [72]. That

is, since the protons are only found in the four-nucleon core, the proton square radius operator

correlations primarily only exist at the shorter distances pertinent to the core, and are thus better

encompassed by the scales of the chosen basis.

The benefit of the MR-IMSRG’s renormalization can be seen in the improved convergence ob-

served in its results. In essence, the renormalization decouples the NN-correlations existing outside

the scales encompassed by the basis, and distributes those correlations inside those scales. The

drawback is that some induced many-body forces must be neglected in the process, an approxima-

tion that would explain the notable differences seen in the extrapolated square radii. We conjecture

that the smaller MR-IMSRG(2) square radii reflect meaningful induced many-body correlations that

are being lost through the MR-IMSRG(2) many-body truncation. Specifically, the fast convergence

of the MR-IMSRG(2) results suggests that the 1p1h and 2p2h correlations relevant to the r2 are

well-accounted for by emax = 12 and 24, respectively, and that the remaining differences with the

NCSM results are from higher many-body correlations omitted by the MR-IMSRG(2) approach.

5.5.2 0νββ matrix element

We turn finally to the ground-state-to-ground-state 6He → 6Be 0νββ-decay NME. As already

mentioned, we assume isospin symmetry so that the initial and final state are described by the

same wavefunction (except for an interchange of protons and neutrons). We present our results in

Fig. (5.3), where we recall that discrete points represent results of many-body calculations while

lines represent fits specified by Eq. (5.22). We decompose the total NME shown in (a) into its

Fermi, GT, and tensor contributions from Eq. (5.7) in panels (b), (c) and (d), respectively. Insets

provide estimates for the percent difference, ∆%, between the results of the two methods within

our mapping of their basis truncation schemes (we omit such estimates for the numerically less
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Figure 5.3 Ground-state-to-ground-state 0νββ-decay NME (a) for 6He → 6Be , decom-
posed into its Fermi (b), GT (c), and tensor (d) contributions, as a function of
the basis cutoff for NCSM (solid circle) and MR-IMSRG(2) (open square) ab
initio calculations. Solid lines denote NCSM extrapolations. Each vertical axis
is expanded for visibility. The three contributions add to the total as specified
by Eq. (5.7)). Insets provide the percent difference in magnitude (open trian-
gles) between the MR-IMSRG results and the NCSM extrapolation as described
in the text. Plotted values and fit parameters are listed in Table (5.1).
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significant tensor contribution). For a given emax, we calculate these values as

(∆%)emax
= 200

∣∣∣∣∣
(
M IMSRG

0ν

)
emax
− f

(
[Nmax]emax

)(
M IMSRG

0ν

)
emax

+ f
(
[Nmax]emax

)∣∣∣∣∣ , (5.21)

where
(
M IMSRG

0ν

)
emax

is the NME result of the MR-IMSRG(2) calculation with cutoff emax, and

f (Nmax) is the NCSM fit described by Eq. (5.22) evaluated at the mapped cutoff value [Nmax]emax
=

emax− 1 (visualized in the figure by the intersection of a vertical line between each open square and

the NCSM extrapolation). While, much like the mapping between cutoffs, these estimates require

some level of arbitration, we nevertheless find them a reasonable and useful tool for gauging the

differences between methods.

The 0νββ-decay NMEs from the NCSM and MR-IMSRG approaches agree remarkably well.

Although the results of the MR-IMSRG(2) calculations reflect significantly larger fluctuations with

each step in the basis cutoff, those fluctuations consistently remain less than a few percent of

the converged value, and the overall trends remain quite similar to those of the NCSM. More

importantly, the contributions, especially the larger Fermi and GT contributions, show excellent

agreement between approaches.

The relative magnitudes of the contributions agree between approaches. The GT contribution is

around four times greater than the Fermi contribution, while the tensor contribution is roughly two

orders of magnitude smaller and of opposite sign. The Fermi, GT, tensor, and total NME results

have Ñ5% ∼ 12.4, 10.7, 10.5, 11.7, respectively, which suggests only slightly slower convergence than

that of the energy but still significantly faster than the NCSM square radii.

The MR-IMSRG 0νββ-decay results resemble a saw-tooth pattern for results beyond emax = 4

that gradually decreases in magnitude as emax increases. The maximum deviation of this pattern

occurs in the GT contribution and reaches the order of a few percent. The deviations of the

tensor contribution appear less systematic, though this may be a consequence of the contribution’s

relatively small magnitude. The deviations in the Fermi and GT results of the MR-IMSRG share a

sign and are most visible at emax = 8, where they consistently deviate in the negative direction.
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A mildly similar (though less pronounced) saw-tooth pattern is observed in the tensor contri-

bution of the NCSM results at the lowest Nmax cutoffs. Within NCSM calculations, such patterns

(sometimes called “odd-even effects”) are generally the consequence of alternating signs in the asymp-

totic tails of the HO basis wavefunctions that are introduced with each increment in Nmax [73]. In

such cases, as the tail region of the calculated wavefunction shifts with each increment, the tail

begins to overlap a region in which the effective operator is particularly active (i.e., has dominant

correlations). If the span of that active region is long enough to require multiple steps in Nmax for

the tail to pass through, the result is a visible contribution to the observable that alternates in sign.

Naturally, the pattern disappears as Nmax increases enough so that the effective operator’s range is

more completely encompassed by that of the basis.

Ostensibly, one might wonder if the pattern observed in the MR-IMSRG 0νββ-decay results

might reflect a similar effect. However, considering our MR-IMSRG(2) calculations employ nat-

ural orbitals and not HO wavefunctions, the pattern’s similarity may be entirely circumstantial.

Determining the origin of these deviations in the MR-IMSRG results will require further study.

Despite these fluctuations making it somewhat challenging to make more than qualitative ob-

servations, the trends of the NCSM and MR-IMSRG results are remarkably similar. Indeed, the

differences in the asymptotic limits of the square radii in Fig. (5.2) do not appear indicative of

similar differences in the 0νββ-decay NME results. Similarly however, the more rapid convergence

observed in the MR-IMSRG(2) ground-state energy and square radii compared to that of the NCSM

does not appear to translate into a more rapid convergence of the 0νββ-decay NMEs in Fig. (5.3).

The differences between the two approach’s 0νββ-decay results appear to be of similar magnitudes

as the saw-tooth deviations present in the MR-IMSRG(2) results, and does not exceed 5% for the

total 0νββ-decay NME at the maximum basis cutoff employed for each method.

If we compare our extrapolated 0νββ-decay NMEs to those calculated in the VMC approach with

3N correlations included [40], we see that the magnitudes of both the GT and Fermi contributions

agree to within about 15%, while those of the tensor contribution agree to within about 10%. For all

three contributions, the VMC results are larger. These differences may suggest a modest correction
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from 3N correlations, though other differences between our study and the VMC study may play a

significant role as well.

5.6 Conclusion

We find significant agreement between the NCSM and MR-IMSRG results in our investigation

of 0νββ-decay in the A = 6 system. The difference in the calculated ground-state energy is only

about ∼ 0.5%. We see measurable differences in the square radius results that offer an estimate for

the effects of correlations that are omitted by the MR-IMSRG(2) truncation at the normal-ordered

two-body level. It is interesting that these differences do not extend to the 0νββ-decay NMEs,

which are remarkably similar in the two approaches, differing by only ∼ 4.5% in the total NME at

the largest basis cutoffs considered. The convergence rate of the 0νββ-decay NMEs appears to be

comparable to that of the energies.

The GT contribution dominates the 0νββ-decay NME, comprising ∼ 80% of its total. The

Fermi contribution makes up most of the remainder, and the tensor contribution is roughly two

orders of magnitude smaller and of opposite sign.

Our estimates of the differences in the total 0νββ-decay NME between the two approaches do not

exceed 9% for any of the basis cutoffs considered. Fluctuations in the MR-IMSRG results could pose

a minor obstacle for extrapolation, though their consistent saw-tooth appearance may suggest these

fluctuations are systematically correctable. Beyond these fluctuations, the two approaches result in

qualitatively similar convergence for the 0νββ-decay NME. This benchmark study lends support to

the application of MR-IMSRG to 0νββ-decay in heavier nuclei, where it is computationally more

feasible than the NCSM. The good agreement between the two approaches for 0νββ-decay NMEs

is a promising sign.
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5.8 Extrapolation methods

In this work, we perform all extrapolations by using a non-linear least-squares fit to a form that

is specific to each observable and varies with cutoff parameter. The fitting process is iterated until all

fit parameters have converged to at least 10 digits of precision. We apply forms identically for both

NCSM and MR-IMSRG extrapolations, treating the former as functions of Nmax and the latter as

functions of emax. We use Xmax to denote either cutoff parameter when defining the extrapolations

provided below. Following a common NCFC practice, we do not include the Nmax = 0 result when

performing fits to any of the NCSM data sets. The extrapolation for each data set is performed

without regard to any other data sets or their extrapolations. The formulae for ground-state energy

and square radius are applied identically to both NCSM and MR-IMSRG results. Extrapolations

for 0νββ-decay NMEs are only performed for the NCSM results because of fluctuations in the

MR-IMSRG results.

It should be noted that the extrapolations described here were originally designed with the Nmax

truncation scheme in mind, and their effectiveness for extrapolating results in the emax truncation

scheme has not yet been fully explored. Nevertheless, the significant similarities of the two schemes

and their quantization of the same underlying variable (i.e. the content of the many-body basis)

suggest the same extrapolation forms may be effective; an expectation that is supported by the

results of this work.
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Motivated by the extrapolations proposed in Ref. [60], we extrapolate the ground-state energy

to the form

f (Xmax) = a+ b · e−cXmax (5.22)

where a, b, and c are fit parameters. We employ the same form for our extrapolations of the NCSM

0νββ-decay results. Values of fit parameters calculated in this study for energy and 0νββ-decay

NMEs may be found in the right-most columns of Table (5.1) alongside their corresponding data

set.

The simple exponential form depicted in Eq. (5.22) generally provides a poor prediction for

the convergence behavior of square radius operator observables. Thus, inspired by the methods

discussed in Ref. [65], we extrapolate square radii by fitting to the form

〈r2〉 = 〈r2〉∞ −
(
c0β + c1β

3
)
e−β , (5.23)

where

β ≡2k∞
~
mΩ

[√
2Xmax + 5 + 0.54437 (2Xmax + 5)

1/6
]
.

Here m = 938.92 MeV is the average mass of a neutron and a proton, and 〈r2〉∞, c0, and c1 are fit

parameters. Unlike the authors of Ref. [65] who determine k∞ while extrapolating the ground-state

energy with their theoretically-founded “IR formula”, we treat k∞ as an additional fit parameter

when extrapolating each square radius. We provide our calculated values of the fit parameters for

each square radius extrapolation alongside its corresponding data set in Table (5.2).
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CHAPTER 6. FUTURE WORK, SUMMARY, AND CONCLUSION

Throughout this work, we have established the context of modern Nuclear Structure in both a

broad sense and as it pertains to NCSM calculation in particular. Beginning from a brief historical

review, we introduced the role of ab initio approaches in the greater scope of Nuclear Structure, and

introduced the NMBP and the formidable challenge it poses. From there, we narrowed our consid-

eration to the NCSM, defined our many-body formalism, identified the computational challenges

NCCI calculations involve, and considered some of the techniques by which they are overcome.

From there we switched to the relative 2N system, established our treatment, and considered how

the problem simplifies to allow the testing of effective tools. With this formalism, we defined the

concept of basis regulation, and explored NCFC extrapolation, OLS renormalization, and SRG

renormalization as practical tools. This provided the background information useful for properly

considering the 2N OLS study performed in Ref. [1], and the NCSM and MR-IMSRG benchmark

study performed in Ref. [2].

In the broader sense, we have identified the matters of scale that are a major source of what

makes the NMBP so challenging, and have described the contemporary perspective of seeking a

UNEM to overcome them. If such a treatment exists, the first step of developing such an approach

is to define the realistic, effective inter-nuclear interaction, and modern ab initio approaches like

the NCSM provide a well-understood method of benchmarking these interactions. Nevertheless, the

success of a UNEM will be highly dependent on possessing well-defined and meaningful uncertainty

assessment.

At the same time, developing new effective methods and extrapolation approaches to solve

the NMBP is critical for modeling heavier nuclei, where the full problem vastly out-scales the

development of modern computational resources. Such methods may allow the NCSM or (effective

approaches based on it) to explore larger systems, and may also enable the development of entirely
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new many-body approaches (like the MR-IMSRG). To this end, their implementation in NCSM

calculation and the validation of other approaches require development and benchmarking, for which

the works discussed here represent an early step forward. Subsequent steps include expanding both

OLS and SRG renormalization to the three-body level, which will be critical for any attempt at

their implementation in both light and heavy nuclei, as well as the implementation of a consistent

χEFT treatment for both the interaction and operators.

The paths to both bridging QCD to the nuclear scale and the accurate description of 3N forces

are open, and we stand in the midst of a whirlwind of development throughout Nuclear Physics that

is only growing in intensity. Other pressing research in Physics including, among other examples,

the need to calculate from first principles neutrinoless double-beta decay in nuclei of experimental

interest, only add to the evolving atmosphere. While there remains a great deal to learn, new

methods to develop, and techniques to master in the path ahead, the future of Nuclear Structure

appears extremely promising.
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APPENDIX. HARMONIC OSCILLATOR MATRIX ELEMENTS

For posterity, we provide analytical expressions for the relative HO matrix elements 〈α|O|α〉

(for basis states α and α’) of the operators (generically denoted here as O) considered in Chapter 4.

In most cases these may be considered to reflect the LO contribution for the operator in the

χEFT expansion. We use the formalism as described in Section 2.2. For brevity, we consider

only quantum numbers relevant to each operator wherever possible, and employ the shorthand∑
α

=
∑

ml,ms

(l ml sms|j mj) to denote a summation of Clebsch-Gordan coefficients associated with

the change to the good j HO basis, where α also stands for a state’s quantum numbers.

It is worth noting that the electric and magnetic multipole expansion terms may be derived

generally in regards to the multipole term. However, for the sake of clarity we narrow our view here

only to the electric quadrupole and magnetic dipole operators to avoid confusion. Since only the

deuteron channel is relevant to this study, for the sake of brevity we define just the static magnetic

dipole matrix elements for the 3s1 − 3d1 coupled channel (and do not include any corrections from

meson exchange).

The analytical expressions provided here commonly rely on the following generalized Laguerre

function identities:

xLkn(x) = (2n+ k + 1)Lkn(x)− (n+ 1)Lkn+1(x)− (n+ k)Lkn−1(x) , (A.1)

xLkn(x) = (n+ k)Lk−1
n (x)− (n+ 1)Lk−1

n+1(x) , (A.2)∫ ∞
0

xke−xLkn(x)Lkm(x)dx =
Γ(n+ k + 1)

n!
δn,m =

(n+ k)!

n!
δn,m , (A.3)

which are derived in Ref. [1]. We also make use of the Wigner-Eckart theorem for tensor operator

TLM

〈α′|TLM |α〉 = (−1)j
′−m′

j

 j′ L j

−m′j M mj

(α′||YL||α) , (A.4)
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as well as the reduced matrix element for a spherical harmonic

(
α′||YL||α

)
= (−1)l

′ l̂′L̂l̂√
4π

l′ L l

0 0 0

 , (A.5)

as provided by Ref. [2].

r2 and p2

We solve the r2 = b2ρ matrix elements in coordinate space, where b ≡
√

~
µΩ . Beyond the angular

part of the wavefunction requiring l = l′, we need only consider the spatial part of the wavefunction

〈r2〉 =NnlNn′l
b

2
b2
∫
ρl+

1
2 e−ρ(ρL

l+ 1
2

n )L
l+ 1

2
n′ dρ ,

(A.1, A.3)
→
=b2

[
(2n+ l +

3

2
)δn,n′ −

√
n(n+ l +

1

2
)δn,n′+1 −

√
(n+ 1)(n+ l +

3

2
)δn,n′−1

]
. (A.6)

In the given formalism, the rms radius rrms is calculated as

rrms =
1

2

√
〈r2〉 . (A.7)

Naturally, the p2 HO matrix elements will be similarly given by Eq. A.6, but with the substitution

b ≡
√

µΩ
~ .

Electric quadrupole

The general multipole operator may be expressed in the provided two-body relative frame as

QLM =
(r

2

)L
YLM . (A.8)
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So the matrix elements in the relative HO basis are

〈α′|QLM |α〉 =
1

2L

∫
Rn′l′Rnlr

L+2dr
∑
α

∑
α′

∫
Yl′m′

l
YLMYlmldΩ

=
1

2L
〈n′ l′|rL|n l〉〈l′ s′ j′m′j |YLM |l s j mj〉

≡ 1

2L
〈rL〉〈YLM 〉 , (A.9)

where the third line shows the shorthand notation 〈rL〉 and 〈YLM 〉 we will use.

We first consider the angular part

〈YLM 〉 =
∑

ml,ms,m
′
l,m

′
s

(
l′m′l s

′m′s|j′m′j
)

(l ml sms|j mj)

∫
Yl′m′

l
YLMYlmdΩ . (A.10)

We require ms = m′s and employ Wigner-Eckart Theorem:

〈YLM 〉 =
∑

ml,m
′
l,ms

l̂′−1
(
l′m′l sms|j′m′j

)
(l ml sms|j mj)

(
l ml LM |l′m′l

)
(l′||YL||l)

(A.5)
→
=(−1)l

′ L̂l̂√
4π

l′ L l

0 0 0

 ∑
ml,m

′
l,ms

(
l′m′l sms|j′m′j

)
(l ml sms|j mj)

(
l ml LM |l′m′l

)
.

(A.11)

From triangularity we may use the substitutions ml = mj −ms and m′l = m′j −ms to get the final

expression

〈YLM 〉 =(−1)l
′ L̂l̂√

4π

l′ L l

0 0 0

∑
ms

(
l′ (m′j −ms) sms|j′m′j

)
(l (mj −ms) sms|j mj)

×
(
l (mj −ms)L (m′j −mj) |l′ (m′j −ms)

)
. (A.12)
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For the radial part, we focus on just the quadrupole moment, i.e. L = 2 and 〈r2〉 ≡ 〈n′ l′|r2|n l〉.

The expression becomes

〈r2〉 =
Nn′l′Nnl

2
b3
∫ (

r2

b2

) l+l′+3
2

e−
r2

b2 L
l+ 1

2
n

(
r2

b2

)
L
l′+ 1

2
n′

(
r2

b2

)
2r

b2
dr

=
Nn′l′Nnl

2
b3
∫
ρ
l+l′+3

2 e−ρL
l+ 1

2
n (ρ)L

l′+ 1
2

n′ (ρ) dρ . (A.13)

We now consider the three cases of ∆L = 0,±2 and denote each case 〈r2〉∆L. Beginning with

∆L = l′ − l = 0 (i.e.〈r2〉0), we have

〈r2〉0 =
Nn′l′Nnl

2
b3
∫
ρl+

3
2 e−ρL

l+ 1
2

n (ρ)L
l+ 1

2
n′ (ρ) dρ

(A.1, A.3)
→
=b2

[
(2n+ l +

3

2
)δn,n′ −

√
n(n+ l +

1

2
)δn,n′+1 −

√
(n+ 1)(n+ l +

3

2
)δn,n′−1

]
. (A.14)

For the case of l′ = l + 2, Eq. A.13 becomes

〈r2〉+2 =
Nn′l′Nnl

2
b3
∫
ρl+

5
2 e−ρL

l+ 1
2

n (ρ)L
l+ 5

2
n′ (ρ) dρ

(A.1, A.2)
→
=
Nn′l′Nnl

2
b3
∫
ρl+

3
2 e−ρ

(
L
l+ 3

2
n − Ll+

3
2

n−1

)(
(n′ + l +

5

2
)L

l+ 3
2

n′ − (n′ + 1)L
l+ 3

2
n′+1

)
dρ

(A.3)
→
=b2

[√
(n+ l +

5

2
)(n+ l +

3

2
)δn,n′ − 2

√
n(n+ l +

3

2
)δn,n′+1 +

√
n(n− 1)δn,n′+2

]
.

(A.15)

Naturally, the ∆L = −2 case will be the same, but with n and l exchanged with n′ and l′, respec-

tively:

〈r2〉−2 =b2

[√
(n′ + l′ +

5

2
)(n′ + l′ +

3

2
)δn,n′ − 2

√
n′(n′ + l′ +

3

2
)δn+1,n′ +

√
n′(n′ − 1)δn+2,n′

]
.

(A.16)
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Putting Eqs. (A.12), (A.14), (A.15) and (A.16) together, the electric quadrupole matrix elements

is expressed

〈α′|QLM |α〉 = 〈Y2M 〉 ·
1

4



〈r2〉0 if l′ = l ,

〈r2〉+2 if l′ = l + 2 ,

〈r2〉−2 if l′ = l − 2 .

(A.17)

Note that when calculating the quadrupole moment (as opposed to an E2 transition matrix element),

one also must include the factor
√

16π
5 .

Magnetic dipole

The full derivation of the conventional magnetic dipole operator can be found in Refs. [3, 4].

For the purposes of this study, only the deuteron channel is required, for which the matrix elements

may be calculated as (in implicit units of the Bohr magneton µB = e~
2mp

)

〈α′|µ1M |α〉 = δn,n′δl,l′

[
(Kp +Kn)mj + (Kp +Kn −

1

2
)
∑
α

∑
α′

]
, (A.18)

where Kp = 2.792763± 3.0 · 10−5 and Kn = −1.913148± 6.6 · 10−5 are the proton and neutron spin

magnetic moments, respectively [5].

Allowed Gamow-Teller β−-decay

We express the many-body allowed GT β−-decay transition operator

M1µ
GT = gA

N∑
i

τ̂+(i)σ̂µ(i) , (A.19)

with axial coupling constant gA = 1.25, isospin raising operator τ̂+ and spin operator σ̂µ operating

on neutron i. Naturally, β+-decay operator may be similarly defined for protons, though isn’t

necessary for our purposes.
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Thus, we calculate allowed GT transition elements for the 2N system as

〈α′|M1µ
GT |α〉 = δn,n′δl,l′δml,m′

l

gA√
4π

∑
α

∑
α′

〈s′m′s|〈t′m′t|

(
2∑
k

σ̂µ(k)τ̂(k)

)
|tmt〉|sms〉 , (A.20)

where the spin and isospin wavefunctions are expressed using Slater determinants as described in

Section 2.2.

0νββ-decay from χEFT at NLO

We consider the 0νββ−-decay up to NLO under the χEFT-treatment defined in Ref. [6]. In the

case of a 1s0 di-neutron decaying to a 1s0 di-proton, we express the relative 2N coordinate space

operator as

O0νββ = −6r (mπr − 2) e−mπr , (A.21)

where mπ is the pion rest mass. Unlike the former operators, we evaluate the matrix elements in

the HO basis through numerical integration.
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